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FieldsNot

A=SpecA

SchemesNot

VarietyDef

EtaleDef

Notation and conventions.

(0.1) In general, k denotes an arbitrary field, k denotes an algebraic closure of k, and k, a
separable closure.

(0.2) If A is a commutative ring, we sometimes simply write A for Spec(A). Thus, for instance,
by an A-scheme we mean a scheme over Spec(A4). If A — B is a homomorphism of rings and X
is an A-scheme then we write Xp = X x4 B rather than X Xg,cc(4) Spec(B).

(0.3) If X is a scheme then we write | X| for the topological space underlying X and Ox for its
structure sheaf. If f: X — Y is a morphism of schemes we write |f|: |X| — |Y| and f*: Oy —
f+«Ox for the corresponding map on underlying spaces, resp. the corresponding homomorphism
of sheaves on Y. If z € |X| we write k(z) for the residue field. If X is an integral scheme we
write k(X)) for its field of rational functions.

If S is a scheme and X and 7" are S-schemes then we write X (T") for the set of T-valued
points of X, i.e., the set of morphisms of S-schemes T" — X. Often we simply write X1 for
the base change of X to T, i.e., X7 := X xg T, to be viewed as a T-scheme via the canonical
morphism Xp — T.

(0.4) If k is a field then by a variety over k we mean a separated k-scheme of finite type which
is geometrically integral. Recall that a k-scheme is said to be geometrically integral if for some
algebraically closed field K containing k£ the scheme X is irreducible and reduced. By EGA
IV, (4.5.1) and (4.6.1), if this holds for some algebraically closed overfield K then X is integral
for every field K containing k. A variety of dimension 1 (resp. 2, resp. n > 3) is called a curve
(resp. surface, resp. n-fold).

By a line bundle (resp. a vector bundle of rank d) on a scheme X we mean a locally free
Ox-module of rank 1 (resp. of rank d). By a geometric vector bundle of rank d on X we mean a
group scheme m: V — X over X for which there exists a affine open covering X = UU,, such that
the restriction of V to each U, is isomorphic to G¢ over U,. In particular this means that we
have isomorphisms of U,-schemes ¢,: 771 (U,) — U, x A%, such that all transition morphisms

0.,—1
taﬁ: Uaﬁ X Ad w Uaﬁ X Ad

are linear automorphisms of U, g X A? over Ua,p = Uy N Ug; this last condition means that
tq,p is given by a O(U,,g)-linear automorphism of O(U, g)[x1, ..., 2q]. For d =1 we obtain the
notion of a geometric line bundle.

If V is a geometric vector bundle of rank d on X then its sheaf of sections is a vector bundle of
rank d. Conversely, if & is a vector bundle of rank d on X then the scheme V := Spec (Sym(g’ V))
has a natural structure of a geometric vector bundle of rank d. These two constructions are
quasi-inverse to each other and establish an equivalence between vector bundles and geometric
vector bundles.

(0.5) In our definition of an étale morphism of schemes we follow EGA; this means that we only
require the morphism to be locally of finite type. Note that in some literature étale morphisms
are assumed to be quasi-finite. Thus, for instance, if S is a scheme and [ is an index set, the
disjoint union [, ; S is étale over S according to our conventions, also if the set I is infinite.

1=
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NumbFieldval (0.6) If K is a number field then by a prime of K we mean an equivalence class of valuations
of K. See for instance Neukirch [1], Chap. 3. The finite primes of K are in bijection with
the maximal ideals of the ring of integers Og. An infinite prime corresponds either to a real
embedding K < R or to a pair {¢,7} of complex embeddings K — C.

If v is a prime of K, we have a corresponding homomorphism ord,: K* — R and a normal-
ized absolute value | |,. If v is a finite prime then we let ord, be the corresponding valuation,
normalized such that ord,(K*) = Z, and we define | |, by

lot, = { (go) 7o) il 0,
Y 0 if 2 =0,

where ¢, is the cardinality of the residue field at v. If v is an infinite prime then we let

2]y = |e(x)| if v corresponds to a real embedding ¢: K — R,
Y| |u(x)]? if v corresponds to a pair of complex embeddings {¢,},

and we define ord, by the rule ord, (z) := —log(|¢(z)|). Here | |: C — Rxg is given by |a+ bi| =
N

pri



AG:absFrob

AG:X(p/S)

AG:relFrob

Definition. Let p be a prime number. We say that a scheme X has characteristic p if the
unique morphism X — Spec(Z) factors through Spec(F,) < Spec(Z). This is equivalent to the
requirement that p- f = 0 for every open U C X and every f € Ox(U). We say that a scheme X
has characteristic 0 if X — Spec(Z) factors through Spec(Q) — Spec(Z). This is equivalent to
the requirement that n € Ox (U)* for every n € Z \ {0} and every open U C X.

Note that if X — Y is a morphism of schemes and Y has characteristic p (with p a prime
number or p = 0) then X has characteristic p, too.

The absolute Frobenius. Let p be a prime number. Let Y be a scheme of characteristic p.
Then we have a morphism Froby: Y — Y, called the absolute Frobenius morphism of Y; it is
given by
(a) Froby is the identity on the underlying topological space |Y|[;

(b) Frob%,: Oy — Oy is given on sections by f +— fP.

To describe Froby in another way, consider a covering {U,} of Y by affine open subsets, say
U, = Spec(Ay). The endomorphism of A, given by f +— fP defines a morphism Frob,: U, —
Uy. On the intersections U, N Ug the morphisms Frob, and Frobg agree, and by gluing we
obtain the absolute Frobenius morphism Froby of Y. Note that Frob, is none other than the
absolute Frobenius morphism of the scheme U,,.

One readily verifies that for any morphism f: X — Y of schemes of characteristic p we have
a commutative diagram

X FI‘ObX X
7| |7 (1)
Y FI‘ObY Y

The relative Frobenius. Let us now consider the relative situation, i.e., we fix a base
scheme S and consider schemes over S. If m: X — § is an S-scheme then in general the absolute
Frobenius morphism Froby is not a morphism of S-schemes, unless for instance S = Spec(FF,).
To remedy this we define 7(®): X(®/5) — § to be the pull-back of 7: X — S via Frobg: S — S.
Thus, by definition we have X ®/9) = g XFrobg,s X and we have a cartesian diagram

xw®/s) _h ., x

N)l lw 2)

S Frobg S

If there is no risk of confusion we often write X ® for X ®/5); note however that in general this
scheme very much depends on the base scheme S over which we are working.

As the diagram (2) is cartesian, the commutative diagram (1), applied with Y = S, gives a
commutative diagram (nog aanpassen)

X
N\ Fx/s
xw/s) W, x (3)
”(p)l lw
s s g

-3 -



The morphism of S-schemes Fy,g: X — X (»/9) is called the relative Frobenius morphism of X
over S. By its definition, Fx/g is a morphism of S-schemes (in other words, 7P F X/s = T)
and W Fx /g is the absolute Frobenius of X.

Example. Suppose S = Spec(R) and X = Spec (R[tl,...,tm]/f) for some ideal I =
(fi,--+fn) C Rlt1, ..., tm]. Let £ € R[t1,... tn] be the polynomial obtained from f; by
raising all coefficients (but not the variables!) to the pth power. Thus, if, in multi-index
notation, f; = Y c,t® then fi(p) =S 2t Then X® = Spec (R[tl, . ,tm]/I(p)) with 1(P) =
(fl(p), e T(Lp)), and the relative Frobenius morphism Fx,g: X — X () is given on rings by the
homomorphism

Rlt1,. .. tm] /TP — R[ty, ... tm]/]

with 7+ r for all r € R and t; — t? . Note that this is a well-defined homomorphism.

The morphism W: X®) — X that appears in (3) does not have a standard name in the
literature. As one easily checks (see Exercise 7?), Frobx /g W: X P) — X @) equals the absolute
Frobenius morphism of X®) . Since an absolute Frobenius morphism is the identity on the
underlying topological space, it follows that Fix,g: X — X (P) induces a homeomorphism |X| —
|X @),

Formation of the relative Frobenius morphism is compatible with base change. This state-
ment means the following. Let m: X — S be an S-scheme. Let T' — S be another scheme over S,
and consider the morphism 7wp: X1 — T obtained from 7 by base-change. The first observation
is that (X7)®/T) is canonically isomorphic to (X /%)), Identifying the two schemes, the rela-
tive Frobenius Fx,. ,r of X7 over T is equal to the pull-back (Fx,g)r of the relative Frobenius
of X over S. Proofs of these assertions are left to the reader.

The absolute and relative Frobenii can be iterated. For the absolute Frobenius this is
immediate: Froby: Y — Y is simply the nth iterate of Froby. The nth iterate of the relative
Frobenius is a morphism Fy /st X — X@®"/9)  Tts definition is an easy generalization of the
definition of Fx,5. Namely, we define a®"): X"/ 5§ as the pull-back of 7: X — S via
Frob§. Then Frob’y factors as

X & x@®"/9) AN X

with 7") o F' e /g = T Alternatively,

x@°/9) — (X(p/w)(P/S), x@°/9) — (X(pz/sv)(?/S), otc

*)

and
FX<7’"_1)/S

Fx(P)/S X(pQ) xS X(pn)> '

F
Fys = (X E, x @)

The geometric Frobenius. Suppose S = Spec(F,), with ¢ = p™. If X is an S-scheme
then the nth iterate of the absolute Frobenius morphism Frob’y: X — X is a morphism of
S-schemes. In fact, Froby = Fy 5. We refer to mx := Froby as the geometric Frobenius of X.

More generally, suppose that S is a scheme over Spec(F,). If X is an S-scheme then by
an F,-structure on X we mean a scheme X, — Spec(F,) together with an isomorphism of
S-schemes Xo®p, S = X. In practice we usually encounter this notion in the situation that
S = Spec(K), where F, C K is a field extension. Given an [ -structure on X, the geometric
Frobenius morphism 7x, induces, by extension of scalars, a morphism 7x: X — X; we again
refer to this morphism as the geometric Frobenius of X (relative to the given F,-structure).

—4 -



Chapter 1. Definitions and basic examples.

An abelian variety is a complete algebraic variety whose points form a group, in such a way that
the maps defining the group structure are given by morphisms. It is the analogue in algebraic
geometry of the concept of a compact complex Lie group. To give a more precise definition of
a abelian variety we take a suitable definition of a group and translate it into the language of
complete varieties.

GroupDef (1.1) Definition. A group consists of a set G together with maps
m: G x G — G (the group law) and i: G — G (the inverse)

and a distinguished element
e € G (the identity element)

such that we have the following equalities of maps.
(i) Associativity: mo(m x idg) = meo(idg x m): G x G x G — G.
(ii) Defining property of the identity element:
mo(e x idg) = ji1: {e} xG— G, and
mo(idg x €) = jo: G x {e} — G,
where j; and jp are the canonical identifications {e} x G — G and G x {e} — G,

respectively, and where we write e for the inclusion map {e} — G.
(iii) Left and right inverse:

eom =mo(idg X 1)eAg =mo(i X idg) Ag: G — G,
where m: G — {e} is the constant map and Ag: G — G X G is the diagonal map.

Written out in diagrams, we require the commutativity of the following diagrams.
(i) Associativity: s
GxGxG =< GxG

mxidgl lm
G x G —_— G
(ii) Identity element:

{etxG =99, Gx@ Gx{e} X Gx@
g1 N\ S m and 2 N\ S m
G G
(iii) Two-sided inverse:
G = {e} G = {e}
(idcyi)l le and (i,idc)l le
GxG — G GxG — G

DefBasEx, 8 februari, 2012 (635)
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GrVarDef

AbVardef

TranslDef

To simplify notation, one often simply writes the symbol G instead of the quadruple
(G,m,i,e), assuming it is clear what m, i and e are.

Adapting this definition to the category of varieties, we obtain the definition of a group
variety.

(1.2) Definition. A group variety over a field k is a k-variety X together with k-morphisms
m: X x X — X (the group law) and i: X — X (the inverse)

and a k-rational point
e € X (k) (the identity element)

such that we have the following equalities of morphisms:
(i)
mo(m xidx) =me(idx xm): X x X x X — X .
(i)
mo(e x idy) = ji: Spec(k) x X — X and
mo(idx X e) = jo: X X Spec(k) — X,

where j1: Spec(k) x X — X and jo: X x Spec(k) — X are the canonical isomorphisms.
(i)

CoTl = TfLO(idX X i)OAx/k = mo(z' X idx)OAX/k: X — X,
where m: X — Spec(k) is the structure morphism.

Note that, since we are working with varieties, checking equality of two morphisms as in
(i)-(iii) can be done on k-rational points.

If X is a group variety then the set X (k) of k-rational points naturally inherits the structure
of a group. More generally, if T' is any k-scheme then the morphisms m, ¢ and e induce a group
structure on the set X (T') of T-valued points of X. In this way, the group variety X defines
a contravariant functor from the category of k-schemes to the category of groups. In practice
it is often most natural to use this “functorial” point of view; we shall further discuss this
in Chapter III.

We can now define the main objects of study in this book.

(1.3) Definition. An abelian variety is a group variety which, as a variety, is complete.

As we shall see, the completeness condition is crucial: abelian varieties form a class of group
varieties with very special properties.

A group is a homogeneous space over itself, either via left or via right translations. We
have this concept here too.

(1.4) Definition. Let X be a group variety over a field k, and let x € X (k) be a k-rational
point. We define the right translation t,: X — X and the left translation t/,: X — X to be the
compositions

t, = (X 2 X x Spec(k) “25% X x, X % X)),

and
) = (X = Spec(k) xj X 29D x5 X 1 X))

-6 —
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FreeTangent

On points, these maps are given by ¢, (y) = m(y,x) and t/,(y) = m(x,y).

More generally, if T' is a scheme over Spec(k) and = € X(T') is a T-valued point of X then
we define the right and left translations ¢,: Xo — Xp and t): Xo — Xp (with X7 := X %, T)
to be the compositions

id T m
tz:(XTgXT XTTXT—XT>XT XTXT—>XT),

and
T id m
t; = (XTgTXTXT&XT X1 X1 _>XT)7

where we write z7: T'— Xp for the morphism (z,id7): T — X X, T = Xr.

X
[ o
! e
J y
J y
T
Figure 1.
Given a k-scheme T and two points x,y € X(T'), one easily verifies that t,ot, = (5,
and t; ot} =, .. In particular, it follows that ¢;;) = t>! and tiw) = ()L

Geometrically, the fact that a group variety X is a principal homogenous space over itself
has the consequence that X, as a variety over k, “looks everywhere the same”. As a consequence
we obtain that group varieties are smooth and have a trivial tangent bundle.

(1.5) Proposition. Let X be a group variety over a field k. Then X is smooth over k. If
we write T'x . for the tangent space at the identity element, there is a natural isomorphism
Tx/r = Tx,e ®x Ox. This induces natural isomorphisms Q}/k = (/\”T)\ae) ® Ox. In particular,
if g = dim(X) then Qﬂc/k ~Ox.

Proof. Since X is a variety, the smooth locus sm(X/k) C X is open and dense. It is also stable
under all translations. Since these make X into a homogenous space over itself, it follows that
sm(X/k) = X.

Set S = Spec (k[e]/(e?)). Let Xg := X x4 S, which we may think of as a “thickened”
version of X. Tangent vectors 7 € T'x . correspond to S-valued points 7: S — X which reduce to
e: Spec(k) — X modulo €. (See Exercise 1.2.) A vector field on X is given by an automorphism
Xs — Xg over S which reduces to the identity on X. To a tangent vector 7 we can thus
associate the vector field £(7) given by the right translation ¢z. The map Tx . — I'(X, Tx /i)
given by 7+ (1) is k-linear and induces a homomorphism a: Tx . ®x Ox — Tx/-

-7 -



lobalVectFields

RatCurves

We claim that « is an isomorphism. As it is a homomorphism between locally free O x-
modules of the same rank, it suffices to show that « is surjective. If z € X is a closed point
then the map

(e mod my): Tx,e @ k(x) — (Tx/k)z ®ox., k(x) = Tx o

is the map T'x . — T'x, , induced on tangent spaces by ¢, which is an isomorphism. Applying the
Nakayama Lemma, it follows that the map on stalks ay: T'x e ®k Ox 2 — (Tx/k)e is surjective.
As this holds for all closed points x, it follows that « is surjective.
The last assertion of the proposition now follows from the identities Qﬁf k= T Ik and
_ 1
Q}/k —/\”QX/k. O

(1.6) Corollary. If X is an abelian variety, every global vector field £ on X is left invariant,
i.e., for every left translation t" we have t'.£ = €.

Proof. With notation as in the proof of the proposition, note that ¢z commutes with all left
translations. It follows that the vector field &(7) is left invariant. The map 7 +— £(7) identifies
T'x . with the space of left invariant vector fields on X. If X is an abelian variety, these are the
only global vector fields on X, since I'(X,Ox) = k. O

(1.7) Corollary. Any morphism from P! to a group variety is constant.

Proof. Consider a morphism ¢: P! — X, with X a group variety. If ¢ is non-constant then
its image C' C X is unirational, hence C' is a rational curve. Replacing ¢ by the morphism
C — X (where C is the normalization of C'), we are reduced to the case that the morphism
¢ is birational onto its image. Then there exists a point y € P! such that the map on tan-
gent spaces Ty¢: T,P! — Ty(yyX is non-zero. Since Qﬁ( Ik is free we then can find a global
1-form w € I'(X, Q%{/k) such that ¢*w does not vanish at y. Since F(]P’I,Q]%,l/k) = 0 this is a
contradiction. O

Before we give the first examples of abelian varieties, let us introduce some notation. Con-
sider a smooth complete curve C over a field k. Note that by a curve we mean a variety of
dimension 1; in particular, C' is assumed to be geometrically reduced and irreducible. By a
(Weil) divisor on C' we mean a finite formal linear combination D = m Py + -- - + m,.P,, where
Py, ..., P. are mutually distinct closed points of C' and where m1,...,m, are integers. The
degree of such a divisor is defined to be deg(D) := my - [k(Py) : k] + -+ m, - [k(P,) : k]. If
f € k(C)* is a non-zero rational function on C, we have an associated divisor div(f) of degree
zero; such divisors are called principal. Two divisors D; and D are said to be linearly equiv-
alent, notation Dy ~ Ds, if they differ by a principal divisor. The divisor class group Cl(C) is
then defined to be the group of divisors modulo linear equivalence, with group law induced by
addition of divisors. Associating to a divisor its degree gives a homomorphism deg: C1(C') — Z.
We set C1°(C) := Ker(deg), the class group of degree zero divisors on C.

A divisor D = m1P; + - - - + m,. P, is said to be effective, notation D > 0, if all coefficients
m; are in Zzg. Given a divisor D on C, write L(D) = I'(C,O¢(D)) for the k-vector space of
rational functions f on C such that div(f)+ D > 0. Also we write £(D) = dimy, (L(D)). Recall
that the theorem of Riemann-Roch says that

D) —U¢K—-D)=deg(D)+1—g,
where K is the canonical divisor class and g is the genus of C.

-8 =
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EllCurveExa

DefBE:Weier

A+B+CLem

With these notations, we turn to elliptic curves, the classical examples of abelian varieties,
and at the origin of the whole theory.

(1.8) Example. We define an elliptic curve to be a complete, non-singular curve of genus 1
over a field k, together with a k-rational point. Let E be such a curve, and let P € E(k) be the
distinguished rational point. The Riemann-Roch theorem tells us that £(nP) := dimy, (L(nP)) =
n for n > 1.

We have L(P) = k. Choose a basis 1,2 of L(2P) and extend it to a basis 1,z,y of
L(3P). Since dimy (L(6P)) = 6, the seven elements 1,x,y,22% zy,y? 23 € L(6P) satisfy a
linear relation. Looking at pole orders, we see that the terms 32 and z® must both occur with
a non-zero coefficient, and possibly after rescaling x and y by a unit we may assume that there
is a relation of the form

Y2 + ar1xy + asy = 25 + asz? 4+ asx + ag with a; € k. (1)
The functions x and y define a rational map
E --» P? by aw (1:a(a):y(a)) for a # P.

This rational map extends to an embedding of E into P? which sends P to (0:1:0). It realizes
E as the non-singular cubic curve in P? given by the affine equation (1), called a Weierstrass
equation for E. The non-singularity of this curve can be expressed by saying that a certain
expression in the coefficients a;, called the discriminant of the equation, is invertible. It is easily
seen from (1) that the image of P is a flex point, i.e., a point where the tangent has a threefold
intersection with the curve. (Alternatively, this is obvious from the fact that the embedding
E — P2 is given by the linear system [3P].)
In order to define the structure of an abelian variety on FE, let us first show that the map

a: B(k) — CI°(E)  given by Q + [Q — P]

is a bijection. If a(Q) = «(Q’) while Q # @', then @ and @’ are linearly equivalent and
dimyg (L(Q)) > 2, which contradicts Riemann-Roch. Thus « is injective. Conversely, if A is a
divisor of degree zero then dimy, ((L(A+ P)) = 1, so there exists an effective divisor of degree 1
which is linearly equivalent to A + P. This divisor is necessarily a k-rational point, say ), and
a(Q) = [A]. This shows that « is a bijection.

We obtain a group structure on E(k) by transporting the natural group structure on C1°(E)
via . Clearly, if £ C K is a field extension then the group laws obtained on E(k) and Ex (K) =
E(K) are compatible, in the sense that the natural inclusion E(k) C E(K) is a homomorphism.
The point P is the identity element for the group law.

The group law just defined has the following geometric interpretation. To avoid confusion
with the addition of divisors, we shall write (A, B) — A @ B for the group law and A — ©A for
the inverse.

(1.9) Lemma. Let K be a field containing k. Let A, B and C be K-rational points of E. Then
A® B®C = P in the group F(K) if and only if A, B and C' are the three intersection points
of Ex with a line.

Proof. By construction, A@® B ® C = P means that A ® B ® C is linearly equivalent to 3P.
The lemma is therefore a reformulation of the fact that the embedding E < P? is given by the
linear system |3P)|. O

ell



The addition of K-rational points is now given as follows. To add A and B one takes the line
through A and B (by which we mean the tangent line to F at A if A = B). This line intersects E
in a third point R (possibly equal to A or B). Note that if A and B are K-rational then so is R.
Then one takes the line through R and P, which intersects E in a third point S. This is the
sum of A and B. To see this, note that by the lemma we have the relations: A®@ B& R = P
and R® P& S = P. Since P is the identity element we get A ® B = S, as claimed. Similarly,
the inverse of an element A is the third intersection point of E with the line through A and P.

*P (point at co)

A 3 i
S=A®%B
E
Figure 2.

We claim that the group structure on E(K) comes from the structure of a group variety
on F. In other words: we want to show that there exist morphisms m: ExFE — Fandi: £ — F
such that the group structure on F(K) is the one induced by m and i. To see this, let &k C K
again be a field extension. If A, B € E(K) then R = ©(A & B) is the third intersection
point of E with the line through A and B. Direct computation shows that if we work on an
affine open subset U C P? containing A and B then the projective coordinates of R can be
expressed as polynomials, with coefficients in k, in the coordinates of A and B. This shows that
(A, B) — ©(A® B) is given by a morphism ¢: Ex F — E. Taking B = P we find that A — ©A
is given by a morphism i: £ — F, and composing ¢ and ¢ we get the addition morphism m.

Explicit formulas for ¢ and m can be found in Silverman [1], Chapter III, §2.

We conclude that the quadruple (E,m,i, P) defines an abelian variety of dimension 1
over k. As we have seen, abelian varieties have a trivial tangent bundle. Therefore, if X is
a l-dimensional abelian variety, it has genus 1: abelian varieties of dimension 1 are elliptic
curves.

To get a feeling for the complexity of elliptic curves we take E to be the elliptic curve over
given by the Weierstrass equation y? + y = 23 — z, with origin Po, = (0:1:0). Let Q be the
rational point (—1,—1). If for n = 1,...,20 we plot the coordinates of n-Q =Q & --- ® Q as
rational numbers, or even if we just plot the absolute value of the numerator of the z-coordinate
we find a parabola shape which indicates that the “arithmetic complexity” of the point n - Q

~10 -



grows quadratically in n; see Figure 3. [opmerking: Verwijzen naar een plaats waar we dit
verder bespreken. Zoals het er nu staat is het een losse flodder.]

1

6

20

1357

8385

12551561

1849037896

4881674119706

2786836257692691

79799551268268089761

280251129922563291422645

54202648602164057575419038802

3239336802390544740129153150480400
1425604881483182848970780090473397497201
596929565407758846078157850477988229836340351
135653370638409659188782769333396233884 7777347485221
2389750519110914018630990937660635435269956452770356625916
47551938020942325784141569050513811957803129798534598981096547726
43276783438948886312588030404441444313405755534366254416432880924019065
66655479518893093532610447590226207125008330695731551720689810858664307580428417

Figure 3.

g=2Exa (1.10) Example. Now we try to generalize the above example, taking a curve of genus 2. So,
let C be a smooth projective curve of genus g = 2 over a field k. Then C is a hyperelliptic
curve and can be described as a double cover m: C' — P} of the projective line. Let i be the
hyperelliptic involution of C'. Consider the surface C' x C', on which we have an involution ¢ given
by (a,b) — (b,a). The quotient C® = (C' x C)/¢ is a non-singular surface that parametrizes
the effective divisors of degree 2 on C'; we shall give further details on this in Chapter 14, §2.
The image of the anti-diagonal A~ = {(a,i(a)) ‘ a € C'} under the canonical map C? —
C® is a curve Y C C® which is isomorphic to C'/i = P! and has self-intersection number
1(A7)? = (2—2g)/2 = —1; hence we find that Y is an exceptional curve. (Of course, Y is just
the g3 of canonical divisors on the curve, viewed as a subvariety of the variety C?) of effective
divisors of degree 2.) By elementary theory of algebraic surfaces we can blow Y down, obtaining
a non-singular projective surface S.

Consider the map &: C® (k) — C1°(C) given by D + [D] — [K], where [K] is the canonical
divisor class. Since [a +i(a)] = [K] for every a € C, this map factors through the contraction
of the curve Y and we get a map a: S(k) — C1°(C). We claim that « is bijective. If D; and
Dy are effective divisors of degree 2 with a(Dy) = (DQ) then clearly Dy ~ Dy. If Dy # Do
then ¢(D;) > 2 (i = 1,2); hence by Riemann-Roch the degree zero divisors K — D; are effective,
which implies that D, and D5 are canonical, i.e., D1, Dy € Y. This shows that « is injective.
It is surjective by Riemann-Roch.

Transporting the natural group structure on C1°(C) via a, we obtain a group structure
on S(k). The formation of this group structure is compatible with field extensions k C K. The
identity element of S(k) is the point [K] € C®) (k), which is the point obtained by contracting Y.

We claim that the addition and inverse on S(k) are given by morphisms. For the inverse this
is easy: using that a +i(a) ~ K for all a € C(k) it follows that the inverse is the automorphism
of S induced by the automorphism (a,b) — (i(a), (b)) of C2.

To see that addition is given by a morphism, consider the projection 7: C°® — C* onto the
first four factors. This map has four natural sections (p1, p2,p3,ps) — (P1,---,P4,Di), and this
defines a relative effective divisor D of degree 4 on C® over C*. Let K be a fixed canonical
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divisor on the last factor C'. By the Riemann-Roch theorem for the curve C' over the function
field k(C*) the divisor D — K is linearly equivalent to an effective divisor of degreee 2 on C
over k(C*). Tt follows that D is linearly equivalent to a divisor of the form E + 7*(G), with E a
relative effective divisor of degree 2 and G a divisor on C*. For P € C* the restriction of E to
the fibre { P} x C' is an effective divisor of degree 2, hence determines a point ¥ (P) of C?). This
gives a map 1: C* — C® which is clearly a morphism. If 8: C® — S is the blowing-down of
Y C C® then the composition Fo1pC* — S factors through § x 3. The resulting morphism
S xS — S is precisely the addition on S. [opmerking: dit voorbeeld moet verder opgepoetst
worden. |

The preceding two examples suggest that, given a smooth projective curve C over a field k,
there should exist an abelian variety whose points parametrize the degree zero divisor classes on
C. If C has a k-rational point then such an abelian variety indeed exists (as we shall see later),
though the construction will not be as explicit and direct as in the above two examples. The
resulting abelian variety is called the jacobian of the curve.

(1.11) Example. In this example we work over the field & = C. Consider a complex vector
space V of finite dimension n. For an additive subgroup L C V the following conditions are
equivalent:

(i) L C V is discrete and co-compact, i.e., the euclidean topology on V induces the discrete

topology on L and the quotient X := V/L is compact for the quotient topology;

(ii) the natural map L ®z R — V is bijective;
(iii) there is an R-basis €1, ..., eq, of V such that L = Zey + - - + Zea,.
A subgroup satisfying these conditions is called a lattice in V.

Given a lattice L C V, the quotient X naturally inherits the structure of a compact (complex
analytic) Lie group. Lie groups of this form are called complex tori. (This usage of the word
torus is not to be confused with its meaning in the theory of linear algebraic groups.)

Let us first consider the case n = 1. By a well-known theorem of Riemann, every compact
Riemann surface is algebraic. Since X has genus 1, it can be embedded as a non-singular
cubic curve in PZ%, see (1.8). If p: X < PZ is such an embedding, write £ = (X) and
P = ¢(0 mod L). We see that (E, P) is an elliptic curve (taking P to be the identity element).
The structure of a group variety on E as defined in (1.8) is the same as the group structure on
X, in the sense that ¢: X —» E2" is an isomorphism of Lie groups.

For n > 2 it is not true that any n-dimensional complex torus X = V/L is algebraic;
in fact, “most” of them are not. What is true, however, is that every abelian variety over C
can analytically be described as a complex torus. In this way, complex tori provide “explicit”
examples of abelian varieties. We will return to this in Chapter 77.

The group structure of an abelian variety imposes strong conditions on the geometry of the
underlying variety. The following lemma is important in making this explicit.

(1.12) Rigidity Lemma. Let X,Y and Z be algebraic varieties over a field k. Suppose
that X is complete. If f: X xY — Z is a morphism with the property that, for some y €
Y (k), the fibre X x {y} is mapped to a point z € Z(k) then f factors through the projection
pry: X xY =Y.

Proof. We may assume that k = k. Choose a point 2o € X (k), and define a morphism g: Y — Z
by g(y) = f(xo,y). Our goal is to show that f = gopry. As X x Y is reduced it suffices to

- 12 —
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prove this on k-rational points.

Let U C Z be an affine open neighbourhood of z. Since X is complete, the projection
pry: X XY — Y is a closed map, so that V := pry (f_l(Z— U)) is closed in Y. By construction,
if P ¢V then f(X x {P}) C U. Since X is complete and U is affine, this is possible only if f
is constant on X x {P}. This shows that f = gopry on the non-empty open set X x (Y — V).
Because X x Y is irreducible, it follows that f = gopry, everywhere. g

(1.13) Definition. Let (X, mx,ix,ex) and (Y, my,iy,ey) be group varieties. A mor-
phism f: X — Y is called a homomorphism if

femx =mye(f x f).
If this holds then also f(ex) = ey and foix =iy of.

The rigidity of abelian varieties is illustrated by the fact that up to a translation every
morphism is a homomorphism:

(1.14) Proposition. Let X and Y be abelian varieties and let f: X — Y be a morphism.
Then f is the composition f = ts°h of a homomorphism h: X — 'Y and a translation t (.
over f(ex) onY.

Proof. Set y := iy (f(ex)), and define h := t, o f. By construction we have h(ex) = ey. Consider
the composite morphism

o (X x X (homx)x (iy omy o (hxh))

Y xY 25 Y).

(To understand what this morphism does: if we use the additive notation for the group structures
on X and Y then g is given on points by g(z,z’) = h(xz + 2’) — h(z’) — h(z).) We have

g({ex} x X) = g(X x{ex}) = {ev}.

By the Rigidity Lemma this implies that g factors both through the first and through the
second projection X x X — X, hence g equals the constant map with value ey. This means
that homx = my o(h x h), i.e., h is a homomorphism. O

(1.15) Corollary. (i) If X is a variety over a field k and e € X (k) then there is at most one
structure of an abelian variety on X for which e is the identity element.

(ii) If (X, m,i,e) is an abelian variety then the group structure on X is commutative, i.e.,
mos=m: X Xx X — X, where s: X x X — X x X is the morphism switching the two factors.
In particular, for every k-scheme T the group X (T') is abelian.

Proof. (i) If (X,m,i,e) and (X,n,j,e) are abelian varieties then m and n are equal when
restricted to X x {e} and {e} x X. Applying (1.12) to mo(m,i-n): X x X — X, which is
constant when restricted to X x {e} and {e} x X, we get m = n. This readily implies that i = j
too.

(ii) By the previous proposition, the map i: X — X is a homomorphism. This implies that
the group structure is abelian. O

(1.16) Remark. It is worthwile to note that in deriving the commutativity of the group the
completeness of the variety is essential. FExamples of non-commutative group varieties are linear
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algebraic groups (i.e., matrix groups) like GL,, for n > 1, the orthogonal groups O,, for n > 1
and symplectic groups Sps,, .

(1.17) Notation. From now on we shall mostly use the additive notation for abelian varieties,
writing x + y for m(z,y), writing —x for i(z), and 0 for e. Since abelian varieties are abelian
as group varieties, we no longer have to distinguish between left and right translations. Also
we can add homomorphisms: given two homomorphisms of abelian varieties f, g: X — Y, we
define f + g to be the composition

fHg==my-(f,9): X —Y XY —Y,

and we set —f := foix = iy o f. This makes the set Homay (X,Y) of homomorphisms of X to
Y into an abelian group.

As we have seen, also the set Homsep/,(X,Y) = Y(X) of X-valued points of ¥ has a
natural structure of an abelian group. By Proposition (1.14), Homay(X,Y) is just the sub-
group of Homsch /i (X,Y) consisting of those morphisms f: X — Y such that f(0x) = Oy,
and Homsgp/1(X,Y) = Homay(X,Y) x Y (k) as groups. We shall adopt the convention that
Hom(X,Y') stands for Homay (X,Y). If there is a risk of confusion we shall indicate what we
mean by a subscript “AV” or “Sch/k”.

We close this chapter with another result that can be thought of as a rigidity property of
abelian varieties.

(1.18) Theorem. Let X be an abelian variety over a field k. If V' is a smooth k-variety then
any rational map f: V --+ X extends to a morphism V — X.

Proof. We may assume that k = k, for if a morphism Vi — X7 is defined over k£ on some dense
open subset of V7, then it is defined over k. Let U C V' be the maximal open subset on which
f is defined. Our goal is to show that U = V.

If P € |V] is a point of codimension 1 then the local ring Oy, p is a discrete valuation ring,
because V is regular. By the valuative criterion for properness the map f: Spec(k(V)) — X
extends to a morphism Spec(Oy,p) — X. Because X is locally of finite type over k, this last
morphism extends to a morphism Y — X for some open Y C V containing P. (Argue on rings.)
Hence codimx (X \ U) > 2.

Consider the rational map F: V x V --» X given on points by (v, w) — f(v) — f(w). Let
W C V xV be the domain of definition of F. We claim that f is defined at a point v € V (k)
if and only if F' is defined at (v,v). In the “only if” direction this is immediate, as clearly
U x U C W. For the converse, suppose F' is defined at (v,v). Then (V X {v}) N W is an open
subset of V= V x {v} containing v. Hence we can choose a point u € U (k) such that (u,v) € W.
Then ({u} x V) N W is an open subset of V = {u} x V containing v, on which f is defined
because we have the relation f(w) = f(u) — F(u,w).

Our job is now to show that the domain of definition W contains the diagonal A C V x V.
Consider the homomorphism on function fields F*: k(X) — k(V x V). Note that F maps ANW
to 0 € X. It follows that F is regular at a point (v,v) € A(k) if and only if F* maps Ox o C k(X)
into Oy xv,(v,v)- Suppose that f is not regular at some point v € V(k), and choose an element
¢ € Ox o with F¥(y) ¢ Oy xv,(v,v)- Let D be the polar divisor of Fi(p), ie.,

D =Y ordp(Fi(p)) - [P]

— 14 -
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where the sum runs over all codimension 1 points P € |V x V| with ordp (F*(¢)) < 0. If (w, w)
is a k-valued point in AN |D| then F*(;) is not in Oy x v, (w,w), hence F' is not regular at (w,w).
But V' x V is a regular scheme, so D C V x V is locally a principal divisor. Then also A N |D)|
is locally defined, inside A, by a single equation, and it follows that A N |D| has codimension
< 1 in A. Hence f is not regular on a subset of V' of codimension < 1, contradicting our
earlier conclusion that codimx (X\U) > 2. [opmerking: Erg helder vind ik het argument nog
niet.] O

Exercises.

Ex:Prod (1.1) Let X; and X5 be varieties over a field k.
(i) If Xy and X, are given the structure of a group variety, show that their product X; x X»
naturally inherits the structure of a group variety.
(ii) Suppose Y := X; x X5 carries the structure of an abelian variety. Show that X; and Xs
each have a unique structure of an abelian variety such that ¥ = X; x X5 as abelian
varieties.

Ex:kleltgt (1.2) Let X be a variety over a field k. Write k[e] for the ring of dual numbers over & (i.e.,
g2 = 0), and let S := Spec (k[e]). Write AutM (Xg/S) for the group of automorphisms of Xg
over S which reduce to the identity on the special fibre X — Xg.

(i) Let = be a k-valued point of X (thought of either as a morphism of k-schemes x: Spec(k) —
X or as a point x € | X| with k(z) = k). Show that the tangent space T , = (m,/m?2)* is
in natural bijection with the space of k[e]-valued points of X which reduce to £ modulo €.
(Cf. HAG, Chap. II, Exercise 2.8.)

(ii) Suppose X = Spec(A) is affine. It is immediate from the definitions that

H(X, Tx i) & Homk(Q}A/k, A) = Derg (A, A).

Use this to show that H(X, Zx ) is a naturally isomorphic with Aut™(Xg/9).
(iii) Show, by taking an affine covering and using (ii), that for arbitrary variety X we have a
natural isomorphism

h: H(X, Ix /i) — Aut™)(Xs/S).

(iv) Suppose X is a group variety over k. If x € X (k) and 7: S — X is a tangent vector at x,
check that the associated global vector field ¢ := h~1(t,) is right-invariant, meaning that
ty«& =& for ally € X. [opmerking: Dit is volgens mij een beetje los uit de pols. Waarom
rechts-invariant en niet links? Bovendien sluit het niet aan op de tekst, want daarin hebben
we het juist over de links-invariante vv. Controleren en aanpassen.]

Ex:RingVar (1.3) A ring variety over a field k is a commutative group variety (X,4,0) over k, together
with a ring multiplication morphism X x, X — X written as (z,y) — x -y, and a k-rational
point 1 € X (k), such that the ring multiplication is associative: x-(y-z) = (z-y)- z, distributive:
- (y+2)=(x-y)+ (x-2), and 1 is a 2-sided identity element: 1-x = x = - 1. Show that the
only complete ring variety is a point. (In fact, you do not need the identity element for this.)

Ex:HomXxXvxY (1.4) Let Xy, X5, Y7 and Y3 be abelian varieties over a field k. Show that

HOIl’lAv(Xl X X2,Y1 X Yz)
=~ Homay (X1, Y1) x Homay (X1, Y2) x Homay (X2, Y1) x Homay (X2, Y2).
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Does a similar statement hold if we everywhere replace “Homay” by “Homge,” 7

Notes. If one wishes to go back to classical antiquity one may put the origin of the theory of abelian varieties with
Diophantos (+ 200 — £ 284) who showed how to construct a third rational solution of certain cubic equations in
two unknowns from two given ones. The roots in a not so distant past may be layed with Giulio Carlo Fagnano
(1682-1766) and others who considered addition laws for elliptic integrals. From this the theory of elliptic
functions was developed. The theory of elliptic functions played a major role in 19th century mathematics. Niels
Henrik Abel (1802-1829), after which our subject is named, had a decisive influence on its development. Other
names that deserve to be mentioned are Adrien-Marie Legendre (1752—-1833), Carl-Friedrich Gauss (1777-1855)
and Carl Gustav Jacobi (1804-1851).

Bernhard Riemann (1826-1866) designed a completely new theory of abelian functions in which the algebraic
curve was no longer the central character, but abelian integrals and their periods and the associated complex
torus. The theory of abelian functions was further developed by Leopold Kronecker (1823-1891), Karl Weierstrass
(1815-1897) and Henri Poincaré (1854-1912). After Emile Picard (1856— 1941) abelian functions were viewed as
the meromorphic functions on a complex abelian variety.

It was André Weil (1906-1998) who made the variety the central character of the subject when he developed
a theory of abelian varieties over arbitrary fields; he was motivated by the analogue of Emil Artin (1898-1962)
of the Riemann hypothesis for curves over finite fields and the proof by Helmut Hasse (1898-1979) for genus 1.
See Weil [2]. David Mumford (1937) recasted the theory of Weil in terms of Grothendieck’s theory of schemes.
His book MAV is a classic. We refer to Klein [1] and Dieudonné [2] for more on the history of our subject. The
Rigidity Lemma is due to Mumford.
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Chapter I1. Line bundles and divisors on abelian varieties.

In this chapter we study line bundles and divisors on abelian varieties. One of the main goals
is to prove that abelian varieties are projective. The Theorem of the Square (2.9) plays a key
role. Since abelian varieties are nonsingular, a Weil divisor defines a Cartier divisor and a line
bundle, and we have a natural isomorphism ClI(X) — Pic(X). We shall mainly work with line
bundles, but sometimes (Weil) divisors are more convenient.

The following abuse of notation will prove handy. If L is a line bundle on a product variety
X x Y and z is a point of X then we shall write L, for the restriction of L to {x} x Y. Strictly
speaking we should write Spec(k:(x)) instead of {z} but where possible we prefer the latter, more
geometric, notation. Similarly, if y is a point of ¥ we denote by L, the restriction Lxx {y3-
Here, of course, x shall always be a point of X and y a point of Y.

In this chapter, varieties shall always be varieties over some ground field k, which in most
cases shall not be mentioned.

§1. The theorem of the square.

(2.1) Theorem. Let X and Y be varieties. Suppose X is complete. Let L and M be two line
bundles on X x Y. If for all closed points y € Y we have L, = M, there exists a line bundle N
on Y such that L =2 M ® p*N, where p =pry: X XY — Y is the projection onto Y.

Proof. This is a standard fact of algebraic geometry. A proof using cohomology runs as follows.
Since Ly @ M !is the trivial bundle and X, is complete, the space of sections H%(X,, L, M, b
is isomorphic to k(y), the residue field of y. This implies that p,(L ® M~1) is locally free of
rank one, hence a line bundle (see MAV, §5 or HAG, Chap. III, § 12). We shall prove that the
natural map

o p'p(LOM YY) - LeoM!
is an isomorphism. If we restict to a fibre we find the map
OXy & F(Xy,Oxy) — Oxy
which is an isomorphism. By Nakayama’s Lemma, this implies that « is surjective and by

comparing ranks we conclude that it is an isomorphism. O

As an easy consequence we find a useful prinicple.
(2.2) See-saw Principle. If, in addition to the assumptions of (2.1), we have L, = M, for
some point x € X then L =2 M.
Proof. We have L = M ® prj,N. Over {z} x Y this gives L, = M, ® (pry N),. Therefore,
(pry N), is trivial, and this implies that N is trivial. O

(2.3) Lemma. Let X and Y be varieties, with X complete. For a line bundle L on X XY, the
set {y € Y | L, is trivial} is closed in Y.

LineBund, 8 februari, 2012 (635)
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Proof. If M is a line bundle on a complete variety then M is trivial if and only if both H°(M)
and H°(M~!) are non-zero. Hence

{y e Y| Ly is trivial} = {y € Y | h%(L,) > 0} n{y € Y | h°(L, ") > 0}. (1)

But the functions y — h°(L,) and y — h°(L~') are upper semi-continuous on Y; see MAV, § 5
or HAG, Chap. III, Thm. 12.8. So the two sets in the right hand side of (1) are closed in Y. [

Actually, there is a refinement of this which says the following.

(2.4) Proposition. Let X be a complete variety over a field k, let Y be a k-scheme, and let L
be a line bundle on X xY. Then there exists a closed subscheme Yy — Y which is the maximal
subscheme of Y over which L is trivial; i.e., (i) the restriction of L to X x Yy is the pull back
(under pry, ) of a line bundle on Yy, and (ii) if p: Z — Y is a morphism such that (idx x )*(L)
is the pullback of a line bundle on Z under p7, then ¢ factors through Yj.

For the proof we refer to MAV, §10. In Chapter 6 we shall discuss Picard schemes; once
we know the existence and some properties of Picx/, the assertion of the lemma is a formal
consequence. (See (6.4).)

The following theorem is again a general fact from algebraic geometry and could be accepted
as a black box. As it turns out, it is of crucial importance for the theory of abelian varieties. In
view of its importance we give a proof.

(2.5) Theorem. Let X and Y be complete varieties over k and let Z be a connected, locally
noetherian k-scheme. Consider points x € X and y € Y, and let z be a point of Z. If L is a line
bundle on X xY x Z whose restriction to {x} xY x Z, to X x {y} x Z and to X x Y x {z} is
trivial then L is trivial.

Proof. We follow the proof given by Mumford in MAV §10. First we remark that that if £ C K
is a field extension then a line bundle M on a k-variety V is trivial if and only if the line bundle
My on Vi is trivial. (See Exercise (2.1).) To prove the assertion we may therefore first replace
the field k£ by an extension. Hence we may assume that the points x, y and z are k-rational
points; this will be used in the definition of the morphisms ¢; and s below.

We view L as a family of line bundles on X X Y parametrized by Z. Let Z’ be the maximal
closed subscheme of Z over which L is trivial, as discussed above. We have z € Z’. We shall
show that Z’ = Z by showing that Z’ is an open subscheme and using the connectedness of Z.

Let ¢ be a point of Z’. Write m for the maximal ideal of the local ring Oz ¢ and I C Oz
for the ideal defining (the germ of) Z’. We have to show that I = (0). Suppose not. By Krull’s
Theorem (here we use that Z is locally noetherian) we have N, m™ = (0), hence there exists a
positive integer n such that I C m”, I ¢ m"*1. Put a; = (I, m"*!), and choose an ideal as with

m"t Cap € (I,m"™) =a;  and  dimye)(ar/az) = 1.

(Note that such ideals exist.) Let Z; C Spec(Oz ) be the closed subscheme defined by the ideal
a; (1 =1,2). We will show that the restriction of L to X x Y x Zj is trivial. This implies that
Z3 is contained in Z’, which is a contradiction, since I ¢ as.

Write L; for the restriction of L to X x Y x Z;. By construction, L; is trivial; choose a
trivializing global section s. The inclusion Z; — Z3 induces a restriction map I'(Ly) — I'(Lq).
We claim: Lo is trivial if and only if s can be lifted to a global section of Ly. To see this,
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suppose first that we have a lift s’. The schemes X XY x Z; and X x Y x Z, have the same
underlying point sets. If s'(P) = 0 for some point P then also s(P) = 0, but this contradicts
the assumption that s is a trivialization of L;. Hence s’ is nowhere zero, and since Lo is locally
free of rank 1 this implies that s’ trivializes Ly. Conversely, if Lo is trivial then the restriction
map I'(Lg) — I'(Ly) is just I'(Oz,) — I'(Oz, ) and this is surjective.

The obstruction for lifting s to a global section of Lo is an element £ € H*(X x Y, Oxxy).
We know that the restrictions of Ly to {x} X Y x Z3 and to X x {y} x Zy are trivial. Writing
i1 = (dx,y): X — X xY and is = (z,idy): Y — X x Y, this means that £ has trivial image
under i}: HY(X xY,Oxxy) — HY(X,Ox) and under i3: H'(X xY,Oxxy) — H'(Y,Oy). But
the map (i7,45) gives a (Kiinneth) isomorphism

HY (X xY,0xxy) — H'(X,0x) ® H'(Y,Oy),

hence £ = 0 and s can be lifted. O

(2.6) Remark. The previous theorem gives a strong general result about line bundles on a
product of three complete varieties. Note that the analogous statement for line bundles on a
product of two complete varieties is false in general. More precisely, suppose X and Y are
complete k-varieties and L is a line bundle on X x Y. If there exist points x € X and y € Y
such that L, = Oy and L, = Ox then it is not true in general that L = Oxy. For instance,
take X =Y to be an elliptic curve, and consider the divisor

D = Ax ({0} x X) - (X x {o})

where Ax C X x X is the diagonal. Note that L = Ox « x (D) restricts to the trivial bundle on
{0} x X and on X x {0}. (Use that the divisor 1-0 (=1-ex) on X is linearly equivalent to a
divisor whose support does not contain 0.) But L is certainly not the trivial bundle: if it were,
Litpyxx = Ox (P — ex) = Ox for all points P € X. But then there is a function f on X with
one zero and one pole and X would have to be a rational curve, which we know it is not.

Theorem (2.5), together with the previous remark, is a reflection of the quadratic character
of line bundles. To explain this, let us make the analogy with functions on the real line. The
quadratic functions f(z) = az? + bx + ¢ are characterized by their property that

flety+z)—flet+y) - fla+2) - fly+2)+ f@)+ fy) + f(2)

is constant. The analogue of this for line bundles on abelian varieties is the celebrated Theorem
of the Cube. Before we state it, we introduce a notational convention. If X is an abelian variety
and I = {i1,...,i,} C {1,2,...,n} then we write

pr: X" — X, or pi..i: X" —X,

for the morphism sending (z1,z2,...,2,) to x;, + -+ + x;,. Thus, for example, p; is the
projection onto the ith factor, p1o = p; + p2, etc. With this notation we have the following
important corollary to the theorem.

(2.7) Theorem of the Cube. Let L be a line bundle on X. Then the line bundle

% 1\ 1+#I
o)== @ piL®Y
Ic{1,2,3}

= plasL @pi, L @ pisL T @ pis LT @ piL @ psL @ piL
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on X x X x X is trivial.
Proof. Restriction of ©(L) to {0} x X x X gives the bundle

m*LRpsL ' @piL ' @m* L™ ® Oxxx @ psL @ piL

which is obviously trivial. Similarly for X x {0} x X and X x X x {0}. By (2.5) the result
follows. O

We could sharpen the corollary by saying that ©(L) is canonically trivial, see Exercise (2.2).

(2.8) Corollary. Let Y be a scheme and let X be an abelian variety. For every triple f, g, h
of morphisms Y — X and for every line bundle L on X, the bundle

fHg+h)'L(f+g)' L' @(f+h)'L'@@+h)' L '@ f LRg LOAL

onY is trivial.
Proof. Consider (f,g,h): Y — X x X x X and use (2.7). O

Another important corollary is the following.

(2.9) Theorem of the Square. Let X be an abelian variety and let L be a line bundle on X.
Then for all x,y € X(k),
ey LO L=t LRt L.

More generally, let T' be a k-scheme and write Ly for the pull-back of L to Xp. Then
tonyLr @ Ly = Lr @t Ly @ prp((z +y) Lo a* L™ @ y* L™1)

for all z,y € X(T).

Proof. In the first formulation, this is immediate from (2.8) by taking for f the identity on X and
for g and h the constant maps with images x and y. For the general form, take f = pry: Xp =
X %, T — X, take g = xoprp and h = yoprp. Then

frg=prxete, [+h=prxely, g+h=(zr+y)oprr
and
fHg+h=prxotsyy.
Now again apply (2.8). O
The theorem allows the following interpretation. (Compare this with what we have seen in

Examples (1.8) and (1.10).)

(2.10) Corollary. Let L be a line bundle on an abelian variety X. Let Pic(X) be the group
of isomorphism classes of line bundles on X. Then the map ¢r: X (k) — Pic(X) given by
x [t L ® L] is a homomorphism.

Proof. Immediate from (2.9). O

(2.11) Remark. The homomorphisms ¢y will play a very important role in the theory. In
later chapters (see in particular Chapters 6 and 7) we shall introduce the dual X* of an abelian
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variety X, and we shall interprete ¢; as a homomorphism X — X?. The homomorphisms
A: X — X' that are (geometrically) of the form ¢; for an ample line bundle L are called
polarizations; see Chapter 11.

At this point, let us already caution the reader that there is a sign convention in the theory
that can easily lead to misunderstanding. In the theory of elliptic curves one usually describes
line bundles of degree 0 (which is what the dual elliptic curve is about!) in the form Og(P — O).
More precisely: if E is an elliptic curve with origin O then the map P +— Og(P — O) gives an
isomorphism E -~ E? = Pic% /i~ This map is not the polarization associated to the ample line
bundle L = Og(O); rather it is minus that map. In general, if D is a divisor on an abelian
variety X then t;0x (D) is Ox ((t—2(D)) = Ox (D — z), not Ox (D + z). So if L = Og(O) on
an elliptic curve E, the map ¢y, is given on points by P +— Og(O — P).

The same remark applies to the theory of Jacobians (see in particular Chapter 14). If C' is
a smooth projective curve over a field k, and if Py € C(k) is a k-rational point then we have a
natural morphism ¢ from C to its Jacobian variety J = Jac(C) := Picy /k- In most literature one
considers the map C' — J given on points by P +— O¢(P — P,). However, we have a canonical
principal polarization on J (see again Chapter 14 for further details), and in connection with
this it is more natural to consider the morphism ¢: C' — J given by P +— O¢(Py — P).

Let X be an abelian variety. For every n € Z we have a homomorphism [n] = [n|x: X — X
called “multiplication by n”. For n > 1, it sends z € X(k) to 2 + --- + = (n terms); for
n = —m < —1 we have [n]x = ix[m]x. If there is no risk of confusion, we shall often simply
write n for [n]; in particular this includes the abbreviations 1 for [1] = idx, 0 for [0] (the constant
map with value 0), and —1 or (—1) for [-1] = —idx. The effect of n on line bundles is described
by the following result.

(2.12) Corollary. For every line bundle L on an abelian variety X we have

n*L = Ln(n+1)/2 ® (_1)*Ln(n—1)/2 ]

Proof. Set f =n, g =1, and h = —1. Applying (2.8), one finds that
nLonm+1)'L'eh-1)'L'en L L (-1)"L

is trivial, i.e.,
nL*@n+ 1)L '@m-1)"L7 =2 (Le(-1)"L)" .

The assertion now follows by induction, starting from the cases n = —1, 0, 1. O

In particular, if the line bundle L is symmetric, by which we mean that (—1)*L = L,
then we find that n*L = L™ for all n. For instance, if M is an arbitrary line bundle then
Ly := M ® (—1)*M is symmetric. Similarly, L_ := M ® (=1)*M~! is an example of an anti-
symmetric line bundle, i.e., a line bundle L for which (—1)*L = L~%; for such line bundles we
have n*L = L™ for all n. Note the contrast between the quadratic effect of n* in the symmetric
case and the linear effect in the anti-symmetric case. Further note that with the notation just
introduced we have M? = [, ® L_; so we find that the square of a line bundle can be written
as the product of a symmetric and an anti-symmetric part. This is a theme we shall explore in
much greater detail in later chapters.
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§2. Projectivity of abelian varieties.

We now turn to the question whether abelian varieties are projective. As it turns out the answer
is ¢
Square plays a key role in this argument. The other proof we give is longer—it takes up most of
this section—but along the way we shall obtain a number of results that are interesting in their

own right. We think that Proposition (2.20) is particularly remarkable.

‘ves”. We give two proofs of this. A fairly short proof is given in (2.26); the Theorem of the

We shall need a couple of facts about group schemes. Since these form the main objects of
study of the next two chapters, we shall simply use what we need, and refer forward to the next
chapter for a precise explanation. What is needed in this chapter can be summarized as follows.

(2.13) Fact. Let X be an abelian variety over a field k. Suppose Y — X is a closed subgroup
scheme. If YV is the connected component of Y containing the origin then Y° is an open and
closed subgroup scheme of Y and Y is geometrically irreducible. If furthermore k is perfect
then the reduced underlying scheme Y., — X is an abelian subvariety of X.

For the proof of this statement, see Prop. (3.17) and Exercise (3.2).

(2.14) Remark. The fact just stated is weaker than what is actually true. Namely, the con-
clusion that Y2, < X is an abelian subvariety of X holds true without the assumption that
the base field k is perfect. We shall see this in Prop. (5.31), once we have more theory at our
disposal. If we already knew the stronger version of the above fact at this stage, it would sim-
plify some of the arguments that we shall give. For instance, in the rest of this chapter we shall
sometimes work over k and then later draw conclusions that are valid over an arbitrary field.
The reason for this detour is that, at this stage, we can apply (2.13) only over a perfect field.

Suppose X = A x B is an abelian variety which is a product of positive dimensional
abelian varieties A and B, and suppose M is a line bundle on A. If pry,: A x B — A is the
projection onto A then the bundle L := pr’ M is invariant under translation over the points of
{04} x B C X. Obviously, L is not ample. This suggests that if L is a line bundle on X which
is invariant under many translations, then L might not be ample.

(2.15) Definition. Let L be a line bundle on an abelian variety X. On X x X we define the
Mumford line bundle A(L) by

AL) =m*LepiL ' @psL .

As we shall see, A(L) is a very useful bundle. The restriction of A(L) to a vertical fibre
{z} x X and to a horizontal fibre X x {z} is t{ L® L~!. In particular, A(L) is trivial on {0} x X
and on X x {0}.

(2.16) Definition. With the above notation, we define K (L) C X as the maximal closed
subscheme (in the sense of (2.4)) such that A(L)|xxx () is trivial over K (L), i.e., such that
A(L)|x x k(L) = prsM for some line bundle M on K(L).

It follows from the universal property in (2.4) that the formation of K (L) is compatible
with base-change. In particular, if k¥ C &’ is a field extension, writing L’ for the pull-back of L
to X xi k', we have K(L') = K(L) x; k'
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Roughly speaking, a point belongs to K (L) if L is invariant under translation by this point.
A more precise statement is given by the following lemma.

(2.17) Lemma. Let T be a k-scheme and x: T — X a T-valued point of X.

(i) The morphism z factors through K (L) if and only if t:Ly ® L3' is the pull-back of a
line bundle on T'.

(ii) Ift: Ly ® L3' = prixM then M = z*L.

(lll) We have A(L)\XXK(L) = OXXK(L) .

In (iii), note that a priori we only knew that A(L)|xx k() is the pull-back of a line bundle
on K(L).

Proof. As usual, Ly denotes the pull-back of L via the projection pry: X — X. Since
pryot,: X — Xp — X isequal to the composition mo (idx xz): X7 = X x,T — X x;: X — X,
we find

trLy = (idx x z)*m*L.

Note that we can write Ly as Ly = (idx x z)*pjL. This gives
trLr ® L;l > (dxy x 2)"A(L) ® (idx x )*p5L = (idx x x)*A(L) ® (prpz*L). (2)

Using the defining properties of K (L) as given in Proposition (2.4), the assertion of (i) readily
follows from this formula.

For (ii) note that t* Ly ® L;' restricts to *L on {0} x T.

For (iii), take T = K (L), and let z: K(L) — X be the inclusion. By (2), t: Ly ® L;* =
AL) | xx k(L) ® (sz)|X><K(L)’ which is of the form psM ® p3(L|k(r)) for some line bundle M
on K(L). On the other hand, 2*L = Lk (1. Now apply (ii) to find that M = Og (. O

(2.18) Proposition. The subscheme K (L) is a subgroup scheme of X.

Proof. Strictly speaking we have not yet defined the notion of a subgroup scheme; see Def-
inition (3.7) below. With that definition the proposition boils down to the statement that
K(L)(T) ¢ X(T) is a subgroup, for any k-scheme 7. This follows from (i) of the Lemma

together with the Theorem of the Square. O
The following lemma shows that an ample line bundle is invariant under only finitely many

translations.

(2.19) Lemma. If L is ample then K (L) is a finite group scheme.

Proof. Without loss of generality we may assume that k is algebraically closed. Set Y :=
K(L)% , C X which, as we noted in (2.13), is an abelian subvariety of X. The restriction L’ of
L to Y is again ample. By (iii) of Lemma (2.17) the bundle A(L") on Y x Y is trivial. Pulling
this bundle back to Y via (1,—1): Y — Y x Y gives that L’ ® (—1)*L’ is trivial on Y. But L’
is ample, hence (—1)*L’ and L' ® (—1)*L’ are ample too. It follows that dim(Y) = 0. Hence
K(L) is finite. O

We would like to have a converse to this fact. To obtain this we first prove the following
remarkable result.

(2.20) Proposition. Let X be an abelian variety over an algebraically closed field k. Let
f: X =Y be a morphism of k-varieties. For x € X, let C', denote the connected component of
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the fibre over f(x) such that x € C,, and write F, for the reduced scheme underlying C,. Then
F, is an abelian subvariety of X and F, = t,(Fy) = x + Fy for all x € X (k).

Proof. Consider the morphism ¢: X x F,, — Y obtained by restricting fom to X x F,. Clearly
©({0} x F,) ={f(z)}. Since F, is complete and connected, the Rigidity Lemma (1.12) implies
that ¢ maps the fibres {z} x F, to a point. In particular, we find that f(y—z+F,) = f(y) for all
z,y € X (k). Putting y = z, x = 0 gives z + Fy C F}; putting y = 0, x = 2z gives —z + F, C F.
This shows that F, = z + Fj.

To see that F is a subgroup scheme of X we take a geometric point a € Fy(k). Then
obviously F, = Fy so that a + Fy = F, = F,. Since Fj is reduced, it follows that Fj is a
subgroup scheme of X. By (2.13) it is then an abelian subvariety. O

To illustrate the proposition, suppose X is a simple abelian variety (over k = k), meaning
that it does not have any non-trivial abelian subvarieties. Then the conclusion is that every
morphism from X to another k-variety is either constant or finite. So the proposition puts
strong restrictions on the geometry of abelian varieties.

We give another interpretation of Fy. For this, let D be an effective divisor on X and
let L = Ox(D) be the corresponding line bundle. We claim that linear system |2D| has no
base-points, i.e., the sections of L®? define a morphism of X to projective space. To see this we
have to show that for every geometric point y of X there exists an element E € |2D| that does
not contain y. Now the Theorem of the Square tells us that the divisors of the form

tyD+t*,D (3)

belong to |2D]. It is easy to see that given y there exists a geometric point x such that y does
not belong to the support of the divisor (3). This means that the map ¢: X — P(I'(X, L®2)*)
defined by the sections of L®? is a morphism. Note that we also have a morphism

f: X—=P=2D|, x—t,D+t",D.

The relation between ¢ and f shall be discussed in 77.
We now again assume that k = k. For an effective divisor D on X we define the reduced
closed subscheme H(D) C X by

H(D)(k)={z e X(k) |t;D=D}.

By t¥ D = D we here mean equality of divisors, not of divisor classes. Clearly H (D) is a subgroup
scheme of X.

(2.21) Lemma. Assume k = k and let L be an effective line bundle on the abelian variety X.
Let f: X — P" be the morphism defined by the sections of L®%. As in (2.20) let Fy be the
reduced connected fibre of f containing 0. Then H(D)® = Fy = K(L)°,,, where the superscript
“0 » denotes the connected component containing 0.

Proof. Let x € Fy. It follows from (2.20) that fot, = f. Hence if s € I'(X, L®?) then s and t%s
have the same zero divisor. We apply this to s = 2, where ¢ is a section of L with divisor D.
This gives t5D = D, i.e., v € H(D). This shows that Fy C H(D), and since Fy is connected
we find Fy C H(D)®. Next, it is obvious that H(D)? is contained in K (L)% ,. To prove that
K(L)°, C Fy, write L’ for the restriction of L to K(L)%,. By (2.13), K(L)%, is an abelian
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subvariety of X. Clearly it suffices to show that L’ is trivial. Now L’, hence also (—1)*L’, has
a non-trivial global section. On the other hand, (—1)*L’ = (L)™', as we have seen already in
the proof of (2.19). Hence L’ is trivial. O

As we shall see in the next chapters, there exists a quotient X’ := X /Fy which is again an
abelian variety. The Stein factorisation of the morphism f is given by X — X’ — P", and L is
the pull-back of a bundle on X’.

(2.22) Proposition. Let L be a line bundle on an abelian variety X which has a non-zero
global section. If K(L) is a finite group scheme then L is ample.

Proof. We may work over an algebraic closure of k. (Note that if a line bundle L becomes ample
after extension of the ground field then it is already ample.) Let D be the divisor of the given
section. By (2.21) the fibre Fj is reduced to a point and by (2.20) it follows that f is quasi-finite.
Since f is also proper, it is finite. By general theory (see HAG, Chap. III, Exercise 5.7), if the
sections of L®? define a finite morphism X — P" then L is ample. O

(2.23) Corollary. Let D be an effective divisor on an abelian variety X over an algebraically
closed field. Set L = Ox (D). Then the following are equivalent:

(a) H(D) is finite,

(b) K(L) is finite,

(¢c) L is ample.

For later use we introduce some terminology.

(2.24) Definition. A line bundle L on an abelian variety is said to be non-degenerate if K (L)
is finite.

So, an effective line bundle is non-degenerate if and only if it is ample.

(2.25) Theorem. An abelian variety is a projective variety.

Proof. We first prove this for k& = k. Choose a quasi-affine open subset U C X such that
X\ U = UierD; for certain prime divisors D;. Set D = ., D;. By the preceding results it
suffices to show that H (D) is finite. If z € H(D) then t, transforms U into itself. Assuming—
as we may—that 0 € U, we find that H(D) is contained in U. But H(D) is proper, since
Fy = H(D)? (as in (2.21)). It follows that H (D) is finite.

If k is arbitrary, we first choose an ample divisor D C X7. Then D is defined over a finite
extension k' of k. If k' is Galois over k (which we may assume if k’'/k is separable) then

D= Z 7D

oceGal(k’/k)

is an ample divisor on X3 which descends to X. If k' /k is purely inseparable such that " ek
for all @ € k&’ then p™ - D is an ample divisor which descends to X (clear from working at charts).
Combination of these two cases gives the theorem. O

(2.26) We give another proof of the theorem. Choose a collection of prime divisors Dy, ..., D,,
all containing 0, such that the (scheme-theoretic) intersection N} D; reduces to the single closed
point 0. Set D = Y | D;,. We claim that 3D is a very ample divisor. To prove this we may
pass to an algebraic closure of the ground field, so we will now assume that k = k.
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First let us show that the linear system |3D| separates points. Thus, given points P # Q
of X we want to find a divisor A, linearly equivalent to 3D, with P € Supp(A) but Q ¢ Supp(A).
The divisor we take shall be of the form

A=) "trDi+t; Di+t*, 4 D; (4)

=1

for certain points a;, b; € X. Note that by the Theorem of the Square, any divisor of this form
is linearly equivalent to 3D. As P # @ and ND; = {0}, one of the D; does not contain P — Q.
Say it is Dy. Take a; = P, and choose the points by, a; and b; (for 2 < i < n) such that @ is
not in the support of

ty Dy +t"p D+ Y th Di+t5,Di+t", 4 D;. (5)
=2

With these choices the divisor A given by (4) has the required properties.

Essentially the same argument shows that [3D| also separates tangent vectors. Namely,
suppose P € X and 0 # 7 € Tx p. As the scheme-theoretic intersection N}, D; reduces to the
single closed point 0, there is an index ¢ such that ¢* ,7 € T'x ¢ does not lie in the subspace
Tp, 0 C Tx,0. Say this holds for ¢ = 1. Take a; = P, and take the remaining points a; and
b; such that P is not in the support of the divisor given by (5). This gives a divisor A with
P € Supp(A) but 7 not tangent to A. O

Later we shall prove that if D is an ample divisor on an abelian variety, then 3D is very
ample. In general 2D will not be very ample. For an example, take an elliptic curve F and let
D = P, a point. Then L(2P) = I'(E,O(2P)) has dimension 2, and |2P| defines a morphism
E — P! of degree 2 with ramification divisor of degree 4. (In fact, if char(k) # 2 this morphism
is ramified in 4 points.)

§3. Projective embeddings of abelian varieties.

Any smooth projective variety of dimension g can be embedded into P?971, see [??]. We shall
now show that an abelian variety of dimension g cannot be embedded into P?9~! and that an
embedding into P29 exists only for elliptic curves and for certain abelian surfaces. So in some
sense abelian varieties do not fit easily into projective space; this also helps to explain why it is
so difficult to write down explicit examples of abelian varieties.

In the proof of the next result we shall use the Chow ring CH(X) of X; we could also work
with a suitable cohomology theory (e.g., Betti cohomology or étale cohomology). In fact, all we
need are a couple of basic formulas which can be found in Fulton’s book [1]. The Chow ring of
an abelian variety is further studied in Chap. 13.

(2.27) Theorem. No abelian variety of dimension g can be embedded into P?9~!. No abelian
variety of dimension g > 3 can be embedded into P29,

Proof. Let X be an abelian variety, dim(X) = g, and suppose we have an embedding i: X —
P = P™. Consider the exact sequence of sheaves (“adjunction sequence”)

0—-Tx —i*Tp — N — 0, (6)
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where N is the normal bundle of X in P and T’x (resp. Tp) is the tangent bundle of X (resp. IP).
Write h € CH(X) for the class of a hyperplane section and ¢; = ¢;(N) (for i = 1,...,9 — 1)
for the ith Chern class of N. We know that the tangent bundle of X is trivial. Therefore, the
equality of total Chern classes resulting from (6) reads:

m—g
A+ =14 ¢
=1

(See Fulton [1], 3.2.12.) This implies immediately that h™~9+! = 0 in CHY(X). But deg(h9)
equals the degree, say d, of X in P which is non-zero. We thus find m —g+1 > g + 1,
ie., m > 2g.

We now consider the case of an embedding into P29. The previous argument gives

2 1
Cqg = ( g9+ ) -h9.
g
Aplying the degree map we find

deg(c,) = <2~C’; 1) deg(h?) = (29 g* 1>d. (7)

But since 2dim(X) = dim(P?), the degree of the highest Chern class ¢4 of the normal bundle N
on X is the self-intersection number of X in P29, (see Fulton [1], §6.3), which is d?. Together

with (7) this gives
2 1
d= < 9 ) .
g

On the other hand, if we apply the Hirzebruch-Riemann-Roch theorem to the line bundle L. =
O(1) and use that the Chern classes of X vanish we find that

x(L) = c1(L)?/g!,

where x(L) = >7_,(—1)"dimy, H*(X, L) is the Euler-Poincaré characteristic of L. Since x(L) €
Z it follows that ¢! divides deg(h9) = d. (For more details on Riemann-Roch see Chapter IX.)
But one easily checks that

29 + 1
g!divides<g+> = g<3.
g

This finishes the proof. O

The proof of the theorem shows that the possibilities for ¢ = 1 and g = 2 are the cubic
curves in P2 and abelian surfaces of degree 10 in P*. We have met the cubic curves in (1.8).
That there exist abelian surfaces of degree 10 in P* was shown first by Comessatti in 1909.
He considered complex abelian surfaces C2/A, where A C C? is the lattice obtained from a
suitable embedding of Ox ® O, with Ok the ring of integers of K = Q(v/5). Horrocks and
Mumford found abelian surfaces in P* as zero sets of sections of the Horrocks-Mumford bundle,
an indecomposable rank two vector bundle on P?. For further discussion we refer to Chap. ?7.

Exercises.
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(2.1) Let £ C K be a field extension. Let X be a k-variety and F' a sheaf of Ox-modules.
Write X for the K-variety obtained from X by extension of scalars, and let Fi := (Xg —
X)*F. Show that dim H°(X, F) = dimg H°(Xf, Fi). Also show that F = Oy if and only if
Fr = OXK .

(2.2) Show that the isomorphism in the Theorem of the Cube is canonical. By this we mean that
to a given line bundle L on an abelian variety X we can associate an isomorphism 7x 1: (L) —
Oxxxxx in a functorial way, i.e, such that for every homomorphism f: Y — X we have
f*(tx,1) = 7y, - (via the canonical isomorphisms O(f*L) = (f x f x f)*©(L) and Oy xy xy =
(f X X [)"Oxxxxx)-

(2.3) Let X be an abelian variety over an algebraically closed field. Show that every effective
divisor on X is linearly equivalent to an effective divisor without multiple components.

2g—1

(2.4) Prove that no abelian variety of dimension g can be embedded into (P') Analyze

when an abelian variety of dimension g can be embedded into (P!)29.

(2.5) Let A and B be two abelian groups, written additively, and let n > 0 be an integer. If
f: A — B is a map (not necessarily a homomorphism), define a map 6, (f): A" — B by

Hn(f) (a17 cee 7a’n) = Z(_l)n+#1f(a1) 5

I

where I runs over the non-empty subsets of {1,2,...,n} and a; := ), ;a;. For instance,
0o(f): {0} — B is the map with value 0 (by convention), 6;(f) = f, and

02(f)(a,a") = fla+a’) = f(a) — f(a')
93(f)(a,a',a") =fla+ad +d")— fla+d)— fla+ad")— f(a +d")+ f(a)+ f(a') + f(a").

(i) Show that 6,,(f): A" — B is symmetric, i.e., invariant under the action of the group S,
on A" by permutation of the factors.
(ii) For n > 1, show that we have a relation

0n+1(f)(a1,... ,an,an_H) =
Hn(f)(ala... y Ay +an+1) - Hn(f)(al’ ,an) — Hn(f)(al, aan—i-l) .

(iii) Use (i) and (ii) to show that 6,,+1(f) = 0 if and only if the map 6,,(f): A™ — B is n-linear.

(iv) Let L be a line bundle on an abelian variety X over a field k. If T is a k-scheme, show
that the map X(T) x X (T) — Pic(T) given by (z1,22) — (21 +22)* L@ zi L' @25 L~ 1 is
bilinear.

Notes. The Theorem of the Square and of the Cube are the pivotal theorems for divisors or line bundles on
abelian varieties. They are due to Weil [3]. Our discussion owes much to Mumford’s book MAV. Solomon
Lefschetz (1884—1972) gave a criterion for complex tori to be embeddable into projective space. This was re-
modelled by Weil to give the projectivity of abelian varieties; see Weil [5]. Our first proof of Theorem (2.25)
follows MAV; the argument given in (2.26) is the one found in Lang [1]. The definition of K (L) goes back to
Weil. Proposition (2.20) is due to M.V. Nori. Theorem (2.27) is due to Barth [1] and Van de Ven [1].
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Chapter I1I. Basic theory of group schemes.

As we have seen in the previous chapter, group schemes come naturally into play in the study of
abelian varieties. For example, if we look at kernels of homomorphisms between abelian varieties
then in general this leads to group schemes that are not group varieties. In the next chapters
we shall have to deal with group schemes more often, so it is worthwile to set up some general
theory.

The present chapter mainly deals with some basic notions, covering most of what is needed
to develop the general theory of abelian varieties. We begin by introducing group schemes in
a relative setting, i.e., working over an arbitrary basis. After this, in order to avoid too many
technicalities, we shall focus on group schemes over a field and affine group schemes.

§1. Definitions and examples.

The definition of a group scheme is a variation on that of group variety, where we consider
arbitrary schemes rather than only varieties. This leads to the following, somewhat cumbersome,
definition.

(3.1) Definition. (i) Let S be a scheme. A group scheme over S, or an S-group scheme, is an
S-scheme 7: G — S together with S-morphisms m: G xg G — G (group law, or multiplication),
i: G — G (inverse), and e: S — G (identity section), such that the following identities of
morphisms hold:
mo(m Xidg) :TfLO(idG ><m): GXSG XsG—>G,
mo(e xidg) =j1: Sxs G — G,
TfLO(idG ><€) :jQZ GXSS—>G,

and

CoTr — mo(idg X i)OAg/S = mo(i X idg)OAg/S: G— G,

where j1: Sx G — G and j2: GXgS — G are the canonical isomorphisms. (Cf. the definitions
and diagrams in (1.1).)

(ii) A group scheme G over S is said to be commutative if, writing s: G xg G — G xg G
for the isomorphism switching the two factors, we have the identity m = mos: G xg G — G.

(iii) Let (m1: G1 — S,mq,i1,e1) and (we: Go — S, ma,i2,€2) be two group schemes over S.
A homomorphism of S-group schemes from G7 to G5 is a morphism of schemes f: G; — G2
over S such that foemy =mao(f x f): G1 Xg G1 — Ga. (This condition implies that foe; = ey
and fOil = iQOf.)

In practice it will usually either be understood what m, ¢ and e are, or it will be unnecessary
to make them explicit; in such case we will simply speak about “a group scheme G over S”
without further specification. (In fact, we already did so in parts (ii) and (iii) of the definition.)

If G is a group scheme over S and if S — S is a morphism of schemes, then the pull-back
G’ := G xg S’ inherits the structure of an S’-group scheme. In particular, if s € S then the
fibre G, := G xg Spec(k(s)) is a group scheme over the residue field k(s).

BasGrSch, 8 februari, 2012 (635)

— 99 —



GrFunctors

YonLem

ReprFun

GrFunII

Given an S-group scheme G and an integer n, we define [n] = [n]g: G — G to be the
morphism which on sections—using multiplicative notation for the group law—is given by g —

g". If n > 1 it factors as

Ag/s (n)

Gt = G),

[n] = (G

where m(™ is the “iterated multiplication map”, given on sections by (g1y--39n) — g1 Gn-
For commutative group schemes [n] is usually called “multiplication by n”.

(3.2) The definitions given in (3.1) are sometimes not so practicable. For instance, to define a
group scheme one would have to give a scheme G, then one needs to define the morphisms m,
1 and e, and finally one would have to verify that a number of morphisms agree. Would it not
be much simpler to describe a group as a scheme whose points form a group? Fortunately this
can be done; it provides a way of looking at group schemes that is often more natural than the
definition given above.

Suppose we have a scheme X over some base scheme S. For many purposes the underlying
point set |X| is not a good object to work with. For instance, if X is a group variety then
|X| will in general not inherit a group structure. However, there is another meaning of the
term “point of X”, and this notion is a very convenient one. Namely, recall that if T — S is
another S-scheme then by a T-valued point of X we mean a morphism of schemes z: T — X
over S. The set of such points is denoted X (7T'). As a particular case, suppose S = Spec(k) and
T = Spec(K), where k C K is a field extension. Then one would also refer to a T-valued point
of X as a “K-rational point”, or in some contexts also as a “point of X with coordinates in K.

It is useful to place our discussion in a more general context. For this, consider a category C.
The example to keep in mind is the category C' = Sch /g of schemes over a base scheme S. Write
C for the category of contravariant functors C — Sets with morphisms of functors as the
morphisms in C. For X € C, the functor hy = Homg(—, X) is an object of C. Sending X
to hx gives a covariant functor h: C' — C. The basic observation is that in this process we lose
no information, as made precise by the following fundamental lemma.

(3.3) Yoneda Lemma. The functor h: C — C is fully faithful. That is, for all objects X and
X' of C, the natural map Home (X, X') — Homg(hx,hx') is a bijection. More generally: for

every F € C and X € C, there is a canonical bijection F(X) — Homg(hx, F).

Proof. Suppose given F € C and X € C. The identity morphism idx is an element of hx (X). If
o € Homg(hy, F) then define ¢(a) := a(idx) € F(X). This gives a map ¢: Homg(hx, F') —
F(X). In the other direction, suppose we have § € F(X). If 2: T — X is an element of hx(7T)
for some T € C, define ¢(8)(x) € F(T) to be the image of § under F(x): F(X) — F(T). Now it
is straightforward to verify that this gives a map ¢: F(X) — Homg(hx, F') which is an inverse
of 9. O

(3.4) Definition. A functor F' € C is said to be representable if it is isomorphic to a functor
hx for some X € C. If this holds then it follows from the Yoneda lemma that X is uniquely
determined by F' up to C-isomorphism, and any such X is said to represent the functor F.

(3.5) Continuing the discussion of (3.2), we define the notion of a group object in the category
C via the embedding into C. Thus, if X is an object of C' then we define a C-group law on X to
be a lifting of the functor hx: C' — Sets to a group-valued functor hx: C — Gr. Concretely, to
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give a group law on an object X means that for each object T in C' we have to specify a group
law on the set hx(T) = Home (T, X), such that for every morphism f: T3 — T, the induced
map hx(f): hx(Ta) — hx(T1) is a homomorphism of groups. An object of C together with a
C-group law on it is called a C-group, or a group object in C. In exactly the same way we can
define other algebraic structures in a category, such as the notion of a ring object in C.

Let us now suppose that C is a category with finite products. This means that C has a
final object (the empty product), which we shall call S, and that for any two objects X and Y
there exists a product X x Y. If G is a group object in C then the group structure on hg gives
a morphism of functors

m: hGXsG :hG X hG — hg.

The Yoneda lemma tells us that this morphism is induced by a unique morphism mg: G xgG —
G. In a similar way we obtain morphisms ig: G — G and eg: S — G, and these morphisms
satisfy the relations of (3.1)(i). Conversely, data (mg,ig,eq) satisfying these relations define a
C-group structure on the object G.

Applying the preceding remarks to the category Sch g of schemes over S, which is a category
with finite products and with S as final object, we see that a group scheme G over S is the
same as a representable group functor on Sch g together with the choice of a representing object
(namely G). The conclusion of this discussion is so important that we state it as a proposition.

(3.6) Proposition. Let G be a scheme over a base scheme S. Then the following data are
equivalent:

(i) the structure of an S-group scheme on G, in the sense of Definition (3.1);

(ii) a group structure on the sets G(T), functorial in T' € Schg.
For homomorphisms we have a similar assertion: if G; and Gy are S-group schemes then the
following data are equivalent:

(i) a homomorphism of S-group schemes f: G; — Ga, in the sense of Definition (3.1);

(ii) group homomorphisms f(T): G1(T) — G2(T'), functorial in T' € Sch g.

In practise we often identify a group scheme G with the functor of points hg, and we use
the same notation G for both of them.

Already in the simplest examples we will see that this is useful, since it is often easier
to understand a group scheme in terms of its functor of points than by giving the structure
morphisms m, ¢ and e. Before we turn to examples, let us use the functorial language to define
the notion of a subgroup scheme.

(3.7) Definition. Let G be a group scheme over S. A subscheme (resp. an open subscheme,
resp. a closed subscheme) H C G is called an S-subgroup scheme (resp. an open S-subgroup
scheme, resp. a closed S-subgroup scheme) of G if hy is a subgroup functor of hg, i.e., if
H(T) € G(T) is a subgroup for every S-scheme 7. A subgroup scheme H C G is said to be
normal in G if H(T) is a normal subgroup of G(T') for every S-scheme T'.

In the sequel, if we speak about subgroup schemes it shall be understood that we give H the
structure of an S-group scheme induced by that on G. An alternative, but equivalent, definition
of the notion of a subgroup scheme is given in Exercise (3.1).

(3.8) Examples. 1. The additive group. Let S be a base scheme. The additive group over S,
denoted G, g, corresponds to the functor which associates to an S-scheme T the additive group
(T, Or). For simplicity, let us assume that S = Spec(R) is affine. Then G, g is represented by
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the affine S-scheme A} = Spec (R[:L‘]) The structure of a group scheme is given, on rings, by
the following homomorphisms:

m: R[z] — R[z] ®r R[z] givenby z—z®1+1®x, defining the group law;
it R[z] — R[z] given by x+— —x, defining the inverse;
é: Rlz] = R given by z 0, defining the identity.

(See (3.9) below for further discussion of how to describe an affine group scheme in terms of a
Hopf algebra.)

2. The multiplicative group. This group scheme, denoted G,, g, represents the functor
which associates to an S-scheme 7' the multiplicative group I'(7, Or)
I(T,Or). As a scheme, G, = Spec (Ogz,z7]). The structure of a group scheme is defined by
the homomorphisms given by

* of invertible elements of

T TR defining the multiplication;

1

T x defining the inverse;

rx—1 defining the identity element.

3. n-th Roots of unity. Given a positive integer n, we have an S-group scheme i, g which
associates to an S-scheme T the subgroup of G,,(T) of elements whose order divides n. The
Og-algebra defining this group scheme is Og[z,z~!]/(2™ — 1) with the group law given as in
Example 2. Put differently, p,, s is a closed subgroup scheme of G, s.

4. p"-th Roots of zero. Let p be a prime number and suppose that char(S) = p. Consider
the closed subscheme a,n 5 C G 5 defined by the ideal (zP"); so apn s := Spec (Ogz]/(2?")).
As is not hard to verify, this is in fact a closed subgroup scheme of G, g. If S = Spec(k) for a
field k of characteristic p then geometrically a,n j, is just a “fat point” (a point together with its
(p™ — 1)st infinitesimal neighbourhood); but as a group scheme it has an interesting structure.
If T is an S-scheme then - (T) = {f € T'(T,Or) | f*" = 0}, with group structure given by
addition.

5. Constant group schemes. Let M be an arbitrary (abstract) group. Let Mg := SM),
the direct sum of copies of S indexed by the set M. If T is an S-scheme then Mg(T) is the
set of locally constant functions of |T'| to M. The group structure on M clearly induces the
structure of a group functor on Mg (multiplication of functions), so that Mg becomes a group
scheme. The terminology “constant group scheme” should not be taken to mean that the functor
T — Mg(T) has constant value M; in fact, if M is non-trivial then Mg(T) = M only if T is
connected.

In Examples 1-3 and 5, the group schemes as described here are all defined over Spec(Z).
That is, in each case we have G's = Gz Xgpec(z) S Where Gz is “the same” example but now
over the basis Spec(Z). The group schemes ay» of Example 4 are defined over Spec(F,). The
subscript “s” is sometimes omitted if the basis is Spec(Z) resp. Spec(F,), or if it is understood
over which basis we are working.

If G = Spec(A) is a finite k-group scheme then by the rank of G we mean the k-dimension of
its affine algebra A. Thus, for instance, the constant group scheme (Z/pZ)y, and (for char(k) =

p) the group schemes p, ;, and «,, j, all have rank p.

6. As is clear from the definitions, a group variety over a field k is the same as a geometrically
integral group scheme over k. In particular, abelian varieties are group schemes.
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7. Using the Yoneda lemma one easily sees that, for a group scheme G over a basis 5, the
morphism i: G — G is a homomorphism of group schemes if and only if G is commutative.

8. Let S be a basis with char(S) = p. If G is an S-group scheme then G®/9) naturally
inherits the structure of an S-group scheme (being the pull-back of G via the absolute Frobenius
morphism Frobg: S — §). The relative Frobenius morphism Fg/g: G — G®/9) is a homomor-
phism of S-group schemes.

9. Let V' be a finite dimensional vector space over a field k. Then we can form the group
variety GL(V) over k. If T = Spec(R) is an affine k-scheme then GL(V)(T) is the group of
invertible R-linear transformations of V ®j R. If d = dimy (V') then GL(V') is non-canonically
(choice of a k-basis for V') isomorphic to the group variety GLg 1, of invertible d x d matrices; as
a scheme the latter is given by

GLa i = Spec (KT, Us 1< 0,5 < d]/(det U — 1)),

where det € k[T};] is the determinant polynomial. (So “ U = det ™" 7.) We leave it to the reader
to write out the formulas for the group law.

More generally, if V' is a vector bundle on a scheme S then we can form the group scheme
GL(V/S) whose T-valued points are the vector bundle automorphisms of Vi over T. If V has
rank d then this group scheme is locally on .S isomorphic to a group scheme GL4 g of invertible
d x d matrices.

10. As another illustration of the functorial point of view, let us define semi-direct prod-
ucts. Let N and @ be two group schemes over a basis .S. Consider the contravariant functor
Aut(N): Sch/g — Gr which associates to an S-scheme 7' the group of automorphisms of Nz as
a T-group scheme. Suppose we are given an action of () on N by group scheme automorphisms;
by this we mean that we are given a homomorphism of group functors

p: Q@ — Aut(N).

Then we can form the semi-direct product group scheme N x, Q. The underlying scheme is just
the product scheme N xg Q. The group structure is defined on T-valued points by

(n,q) - (n',q) = (n-pla)(n'),q-d),
as expected. By (3.6) this defines an S-group scheme N x, Q.

Here is an application. In ordinary group theory we know that every group of order p? is
commutative. The analogue of this in the context of group schemes does not hold. Namely, if
k is a field of characteristic p > 0 then there exists a group scheme of rank p? over k that is
not commutative. We construct it as a semi-direct product. First note that there is a natural
action of the group scheme G,,, on the group scheme G,; on points it is given by the usual action
of G, (T) = T(T,0r)* on G,(T) = I'(T,O0r). This action restricts to a (non-trivial) action of
ppk C Gmi on app C Gg . Then the semi-direct product vy, x p, has rank p? but is not
commutative.

(3.9) Affine group schemes. Let S = Spec(R) be an affine base scheme. Suppose G = Spec(A)
is an S-group scheme which is affine as a scheme. Then the morphisms m, ¢ and e giving G its
structure of a group scheme correspond to R-linear homomorphisms
m: A— ARr A called co-multiplication,
wA— A called antipode or co-inverse,

e:A—- R called augmentation or co-unit.
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These homomorphisms satisfy a number of identities, corresponding to the identities in the
definition of a group scheme; see (3.1)(i). For instance, the associativity of the group law
corresponds to the identity

(Mmel)em=(1®m)om: A— ARr AQRr A.

We leave it to the reader to write out the other identities.

A unitary R-algebra equipped with maps 7, € and ¢ satisfying these identities is called a
Hopf algebra or a co-algebra over R. A Hopf algebra is said to be co-commutative if som =
m: A— ARgr A, where s: AQr A — ARp A is given by £ ® y — y ® x. Thus, the category of
affine group schemes over R is anti-equivalent to the category of commutative R-Hopf algebras,
with commutative group schemes corresponding to Hopf algebras that are both commutative
and co-commutative. For general theory of Hopf algebras we refer to 7?7. Note that in the
literature Hopf algebras can be non-commutative algebras. In this chapter, Hopf algebras are
assumed to be commutative.

The ideal I := Ker(é: A — R) is called the augmentation ideal. Note that A=R-1¢ 1
as R-module, since the R-algebra structure map R — A is a section of the augmentation. Note
that the condition that e: S — G is a two-sided identity element is equivalent to the relation

m(a) =(a®1)+ (1®a)mod I ® I (1)

in the ring A ® g A. For the co-inverse we then easily find the relation

i(a) = —amod I*, ifacl. (2)

(Exercise (3.3) asks you to prove this.)

The above has a natural generalization. Namely, suppose that G is a group scheme over
an arbitrary basis S such that the structural morphism m: G — S is affine. (In this situation
we say that G is an affine group scheme over S; cf. (3.10) below.) Let Ag := 7.0, which is a
sheaf of Og-algebras. Then G = Spec(Ag) as S-schemes, and the structure of a group scheme
is given by homomorphisms of (sheaves of) Og-algebras

m: Ag—>Ag®OS Ag, i: Ag — Ag, and é: Ag — Og

making Ag into a sheaf of commutative Hopf algebras over Og. Note that the unit section
e: S — G gives an isomorphism between S and the closed subscheme of G defined by the
augmentation ideal I := Ker(é).

§2. Elementary properties of group schemes.

(3.10) Let us set up some terminology for group schemes. As a general rule, if P is a property of
morphisms of schemes (or of schemes) then we say that a group scheme G over S with structural
morphism 7: G — S has property P if 7 has this property as a morphism of schemes (or if G, as
a scheme, has this property). Thus, for example, we say that an S-group scheme G is noetherian,
or finite, if G is a noetherian scheme, resp. if 7 is a finite morphism. Other properties for which
the rule applies: the property of a morphism of schemes of being quasi-compact, quasi-separated,
(locally) of finite type, (locally) of finite presentation, finite and locally free, separated, proper,
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flat, and unramified, smooth, or étale. Similarly, if the basis S is the spectrum of a field k
then we say that G is (geometrically) reduced, irreducible, connected or integral if G has this
property as a k-scheme.

Note that we call G an affine group scheme over S if 7 is an affine morphism; we do not
require that G is affine as a scheme. Also note that if G is a finite S-group scheme then this
does not say that G(T) is finite for every S-scheme 7. For instance, we have described the
group scheme «,, (over a field k of characteristic p) as a “fat point”, so it should have a positive
dimensional tangent space. Indeed, oy, (k) = {1} but o, (k[e]) = {1 + ac | a € k}. We find
that the tangent space of o, at the origin has k-dimension 1 and that oy, (k:[s]) is infinite if k is
infinite.

Let us also recall how the predicate “universal(ly)” is used. Here the general rule is the
following: we say that m: G — S universally has property P if for every morphism f: S" — S,
writing 7’: G’ — S’ for the morphism obtained from 7 by base-change via f, property P holds
for G’ over .

Let us now discuss some basic properties of group schemes. We begin with a general lemma.

(3.11) Lemma. (i) Let

X 4 ox
2 E
vy 2y

be a cartesian diagram in the category of schemes. If g is an immersion (resp. a closed immersion,
resp. an open immersion) then so is g'.

(ii) Let f: Y — X be a morphism of schemes. If s: X — Y is a section of f then s is an
immersion. If f is separated then s is a closed immersion.

(iii) If s: X — Y is a section of a morphism f, as in (ii), then s maps closed points of X to
closed points of Y.

Proof. (i) Suppose g is an immersion. This means we have a subscheme Z C Y such that g
induces an isomorphism X - Z. If Z is an open subscheme (i.e., g an open immersion) then
Y’ xy Z is naturally isomorphic to the open subscheme j~1(Z) of Y’, and the claim follows. If
Z is a closed subscheme defined by some ideal I C Oy (i.e, g a closed immersion) then Y’ xy Z
is naturally isomorphic to the closed subscheme of Y’ defined by the ideal generated by j=1(I);
again the claim follows. The case of a general immersion follows by combining the two previous
cases.
(ii) By (i), it suffices to show that the commutative diagram

X —= Y

g [ ®

y xEeh oy oy

is cartesian. This can be done by working on affine open sets. Alternatively, if T" is any scheme
then the corresponding diagram of T-valued points is a cartesian diagram of sets, as one easily
checks. It then follows from the Yoneda lemma that (3) is cartesian.

(iii) Let P € X be a closed point. Choose an affine open U C Y containing s(P). It suffices
to check that s(P) is a closed point of U. (This is special about working with points, as opposed
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to arbitrary subschemes.) But U — X is affine, hence separated, so (i) tells us that s(P) is a
closed point of U. Alternatively, the assertion becomes obvious by working on rings. U

(3.12) Proposition. (i) An S-group scheme G is separated if and only if the unit section e is
a closed immersion.

(ii) If S is a discrete scheme (e.g., the spectrum of a field) then every S-group scheme is
separated.

Proof. (i) The “only if” follows from (ii) of the lemma. For the converse, consider the commu-

tative diagram
G _ S

s e

GXSG mo (idg X1) G

For every S-scheme T it is clear that this diagram is cartesian on T-valued points. By the
Yoneda lemma it follows that the diagram is cartesian. Now apply (i) of the lemma.

(ii) Since separatedness is a local property on the basis, it suffices to consider the case that
S is a 1-point scheme. Then the unit section is closed, by (iii) of the lemma. Now apply (i). O

As the following example shows, the result of (ii) is in some sense the best possible. Namely,
suppose that S is a scheme which is not discrete. Then S has a non-isolated closed point s (i.e.,
a closed point s which is not open). Define G as the S-scheme obtained by gluing two copies of
S along S\ {s}. Then G is not separated over S, and one easily shows that G has a structure
of S-group scheme with Gy = (Z/2Z)(s). Notice that in this example G is even étale over S.

(z/)27) trivial fibres

! b

I

Figure 3.

(3.13) Definition. (i) Let G be an S-group scheme with unit section e: S — G. Define
eq = e(S) C G (a subscheme of GG) to be the image of the immersion e.

(ii) Let f: G — G’ be a homomorphism of S-group schemes. Then we define the kernel of f
to be the subgroup scheme Ker(f) := f~1(eq) of G.

Note that the diagram
Ker(f) «— G

| |
S — &

is cartesian. In particular, Ker(f) represents the contravariant functor Sch,g — Gr given by
T Ker(f(T): G(T) — G’(T))
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and is a normal subgroup scheme of G. If G’ is separated over S then Ker(f) C G is a closed
subgroup scheme.

As examples of kernels we have, taking S = Spec([F,,) as our base scheme,
pp = Ker(F: G, — Gy,), o =Ker(F: G, — G,),

where in both cases F' denotes the Frobenius endomorphism.

(3.14) Left and right translations; sheaves of differentials. Let G be a group scheme over a
basis S. Given an S-scheme T" and a point g € G(T), the right translation t,: Gy — Gr and
the left translation ¢: Gr — G are defined just as in (1.4). Using the Yoneda lemma we can
also define t, and t{ by saying that for every T-scheme 7", the maps t,(1"): G(T") — G(1")
and ¢, (T"): G(T") — G(T") are given by 7y — g resp. 7 — g7. Here we view g as an element of
G(T") via the canonical homomorphism G(T') — G(T").

If in the above we take T'= G and g = idg € G(G) then the resulting translations 7 and
7' G x5 G — G xg G are given by (g1,92) — (9192, 92), resp. (91,92) — (g291,92). Here we
view G X g G as a scheme over G via the second projection. We call 7 and 7’ the universal right
(resp. left) translation. The point is that any other right translation t;: G xg T — G xg T as
above is the pull-back of 7 via idg x ¢ (i.e., the pull-back via g on the basis), and similarly for
left translations.

As we have seen in (1.5), the translations on G are important in the study of sheaves of
differentials. We will formulate everything using right translations. A 1-form a € I'(G, Qé / s)
is said to be (right) invariant if it is universally invariant under right translations; by this we
mean that for every 7' — S and g € G(T), writing ap € I'(T, QIGT/T) for the pull-back of «
via G — G, we have t;aT = «a. In fact, it suffices to check this in the universal case: « is
invariant if and only if pja € T'(G x s G, piQg / ) is invariant under 7. The invariant differentials
form a subsheaf (W*Qé/S)G of W*Qé/s.

For the next result we need one more notation: if 7: G — S is a group scheme with unit
section e: S — G, then we write

wa/s = e*Q};/S,
which is a sheaf of Og-modules. If S is the spectrum of a field then wg g is just cotangent space
of G at the origin.

(3.15) Proposition. Let m: G — S be a group scheme. Then there is a canonical isomorphism
T'ways = Q};/S. The corresponding homomorphism wg;s — W*Qé/s (by adjunction of the
functors 7 and =) induces an isomorphism we g — (W*Qé/s)c.
Proof. As in (1.5), the geometric idea is that an invariant 1-form on G can be reobtained from
its value along the zero section by using the translations, and that, by a similar proces, an
arbitrary 1-form can be written as a function on G times an invariant form. To turn this idea
into a formal proof we use the universal translation 7.

As above, we view G Xg G as a G-scheme via po. Then 7 is an automorphism of G xg G
over (7, so we have a natural isomorphism

T*Q};XSG/G — Qé‘st/G- (4)
We observe that G x s G/G is the pull back under p; of G/S; this gives that Q! =piQ

GxsG/G };/S'
As 7= (m,p2): G xs G — G xg G, we find that (4) can be rewritten as
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Pulling back via (eom,idg): G — G xg G gives the isomorphism
Qé‘/s ;W*G*Qé/s:ﬂ'*wG/s. (5)

By adjunction, (5) gives rise to a homomorphism 7*: wg/s — W*Qlc /s associating to a
section 8 € I'(S,wq/s) the 1-form 73 € I'(G,m*wq/s) = I'(G, QlG/S). The isomorphism (5)
is constructed in such a way that 7#*( is an invariant form. Clearly e*(7*3) = (. Conversely,
if « € T'(G, Q%;/s) is an invariant form then m*(a) = 7*(pj(a)) = pi(a). Pulling back (as in
the above argument) via (eow,idg) then gives that @ = 7*e*(a). This shows that the map
(W*Qé/s)G — wq/s given on sections by a +— e*a is an inverse of 7*. O

(3.16) The identity component of a group scheme over a field. Let G be a group scheme over
a field k. By (3.12), G is separated over k. The image of the identity section is a single closed
point e = eg of degree 1.

Assume in addition that G is locally of finite type over k. Then the scheme G is locally
noetherian, hence locally connected. If we write G° for the connected component of G con-
taining e, it follows that GV is an open subscheme of G. We call G° the identity component
of G.

Geometrically, one expects that the existence of a group structure implies that G, as a
k-scheme, “looks everywhere the same”, so that certain properties need to be tested only at the
origin. The following proposition shows that for smoothness and reducedness this is indeed the
case. Note, however, that our intuition is a geometric one: in general we can only expect that
“G looks everywhere locally the same” if we work over k = k. In the following proposition it is
good to keep some simple examples in mind. For instance, let p be a prime number and consider
the group scheme g, over the field Q. The underlying topological space consists of two closed
points: the origin e = 1, and a point P corresponding to the non-trivial pth roots of unity. If
we extend scalars from Q to a field containing a pth root of unity then the identity component
(pp)? = {e} stays connected but the other component { P} splits up into a disjoint union of p—1
connected components.

(3.17) Proposition. Let G be a group scheme, locally of finite type over a field k.
(i) The identity component G° is an open and closed subgroup scheme of G which is
geometrically irreducible. In particular: for any field extension k C K, we have (G°)x = (G )°.
(ii) The following properties are equivalent:
(al) G ®y K is reduced for some perfect field K containing k;
(a2) the ring Og . ®i K is reduced for some perfect field K containing k;
(bl) G is smooth over k;
(b2) G is smooth over k;
(b3) G is smooth over k at the origin.
(iii) Every connected component of G is irreducible and of finite type over k.

Proof. (i) We first prove that G° is geometrically connected; that it is even geometrically irre-
ducible will then follow from (iii). More generally, we show that if X is a connected k-scheme,
locally of finite type, that has a k-rational point x € X (k) then X is geometrically connected.
(See EGA 1V, 4.5.14 for a more general result.)

Let k be an algebraic closure of k. First we show that the projection p: Xz — X is open
and closed. Suppose {V, }oer is an open covering of X. Then {Va,E}ae 1 is a covering of X+. If
each Va,E — V, is open and closed then the same is true for p. Hence we may assume that X is
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affine and of finite type over k. Let Z C X3 be closed. Then there is a finite extension k¥ C K
inside k such that Z is defined over K; concretely this means that there is closed subscheme
Zx C Xk with Z = Zx @k k. Hence it suffices to show that the morphism pg: Xx — X is
open and closed. But this is immediate from the fact that px is finite and flat. (Use HAG,
Chap. III, Ex. 9.1 or EGA IV, Thm. 2.4.6.)

Now suppose we have two non-empty open and closed subsets Uy and U, of X7. Because
X is connected, it follows that p(U;) = p(Us) = X. The unique point T € X3 lying over x is
therefore contained in Uy N Uz; hence Uy N Uz is non-empty. This shows that X+ is connected.

(ii) The essential step is to prove that (a2) = (bl); all other implications are easy. (For
(b3) = (b1) use (3.15).) One easily reduces to the case that k = k and that G is reduced at
the origin. Using the translations on G it then follows that G is reduced. In this situation, the
same argument as in (1.5) applies, showing that G is smooth over k.

For (iii) one first shows that G is irreducible and quasi-compact. We have already shown
that (G°)x = (Gk)° for any field extension k C K, so we may assume that k = k, in which case
we can pass to the reduced underlying group scheme GY ,; see Exercise (3.2). Note that G2,
has the same underlying topological space as G°. By (ii), G, is smooth over k. Every point of
GY , therefore has an open neighbourhood of the form U = Spec(A) with A a regular ring. As a
regular ring is a domain, such an affine scheme U is irreducible. Now suppose G2 is reducible.
Because it is connected, there exist two irreducible components Cy # Co with C1 NCy # 0. (See
EGA 0p, Cor. 2.1.10.) If y € Cy, N Co, let U = Spec(A) be an affine open neighbourhood of y in
G?ed with A regular. Then one of C; NU and Cs NU contains the other, say CoNU C C1 NU.
But C5 N U is dense in C5, hence Cy C €. As Cq and (s are irreducible components we must
have Cy = C1, contradicting the assumption.

To prove quasi-compactness of G°, take a non-empty affine open part U C G°. Then U
is dense in GV, as G is irreducible. Hence for every g € G%(k) the two sets g - U~! and U
intersect. It follows that the map U x U — G° given by multiplication is surjective. But U x U
is quasi-compact, hence so is GV.

Now we look at the other connected components, working again over an arbitrary field k.
If H C G is a connected component, choose a closed point h € H. Because G is locally of
finite type over k, there is a finite normal field extension & C L such that L contains the residue
field k(h). As in the proof of (i), the projection p: H ®; L — H is open and closed. One
easily shows that all points in p~!(h) are rational over L. If he p~1(h) is one of these points
then using the translation ¢; one sees that the connected component C' (ﬁ) of Hj containing h
is isomorphic to GY as an L-scheme. Then p(C(h)) C H is irreducible, closed and open. As
H is connected it follows that p(C(h)) = H and that H is irreducible. Finally, the preceding
arguments show that H ®, L is the union of the components C(h) for all h in the finite set
p~t(h). As each of these components is isomorphic to G%, which is quasi-compact, it follows
that H is quasi-compact. ]

(3.18) Remarks. (i) Let G be a k-group scheme as in the proposition. Suppose that G ®; K
is reduced (or that Og . ®) K is reduced) for some non-perfect field K containing k. Then
it is not necessarily true that G is smooth over k. Here is an example: Suppose K = k is a
non-perfect field of characteristic p. Choose an element a € k not in kP. Let G be the k-scheme
G = Spec (k[X,Y]/(X? + aY?)). View A7 = Spec (k[X,Y]) as a k-group scheme by identifying
it with G, X Gg. Then G is a closed subgroup scheme of A7. One easily checks that G is
reduced, but clearly it is not geometrically reduced (extend to the field k(¢/a)), and therefore
G is not a smooth group scheme over k.
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(ii) In (iii) of the proposition, let us note that the connected components of G are in general
not geometrically irreducible; see the example given before the proposition.

(3.19) Remark. Let G be a group scheme, locally of finite type over a field k. In case G is
affine, we have seen in (3.9) that we can study it through its Hopf algebra. For arbitrary G
there is no immediate substitute for this, not even if we are only interested in the local structure
of G at the origin. Note that the group law does not, in general, induce a co-multiplication
on the local ring Og . We do have a homomorphism Og . — Ogx,q,(e,e) Put Ocx, G (e,e) 18
in general of course not the same as Og . @ Og ¢; rather it is a localisation of it. In some
cases, however, something slightly weaker already suffices to obtain interesting conclusions. In
the proof of the next result we shall exploit the fact that, with m C Og . the maximal ideal, we
do have a homomorphism m: Og,e — (Og,./m?) ®;, (Og,./m?) for which the analogue of (1) in
section (3.9) holds.

Another possibility is to consider the completed local ring OG,S. The group law on G
induces a co-multiplication 7: OAG,E — OAG,6®;€OAG,€ (completed tensor product). In this way we
can associate to a group variety G a (smooth) formal group G = Spf (Og,e). We shall further
go into this in 77.

(3.20) Theorem. (Cartier) Let G be a group scheme, locally of finite type over a field k of
characteristic zero. Then G is reduced, hence smooth over k.

Proof. We follow the elementary proof due to Oort [2]. Let A := Og . be the local ring of G
at the identity element. Write m C A for the maximal ideal and nil(A) C A for the nilradical.
Since we are over a perfect field, the reduced scheme G,¢q underlying G is a subgroup scheme
(Exercise (3.2)), and by (ii) of Prop. (3.17) this implies that A,eq := A/nil(A) is a regular local
ring. Writing myeq := m/nil(A) C Ayeq, this gives

dlm(A) = dim(Ared) = dimg (mred/m?ed) = dimy, (m/m2 + nﬂ(A)) :

In particular, we see that it suffices to show that nil(A) C m?. Indeed, if this holds then
dim(A) = dim(m/m?), hence A4 is regular, hence nil(A) = 0.

Choose 0 # x € nil(A), and let n be the positive integer such that "~ # 0 and 2" = 0.
Because A is noetherian, we have N,>0m? = (0), so there exists an integer ¢ > 2 with 2"~! ¢ mq.
Consider B := A/m? and m := m/m? C B, and let & € B denote the class of z € A modulo m?.
As remarked above, the group law on G induces a homomorphism m: A — B ®; B. Just as
in (3.9), the fact that e € G(k) is a two-sided identity element implies that we have

m(z)=(Z®1)+(19z)+y  withyeme,m. (6)
(See also Exercise (3.3).) This gives

0=m(z")=m(z)" = ((

Il
3
/} &
~_
—
K
X
=
3
3
—
—
X
&
+
<
~.

From this we get the relation
n(E"l®1) e ((gt«”—l ) ®kB+B®m2) C By B.
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But char(k) = 0, so that n is a unit, so that even (z" ' ® z) € (2" ! -m) ® B + B ®; m>.
Now remark that a relation of the form y; ® yo € J1 ® B + B ®, Jo implies that either y; € J;
or ys € Jo. (To see this, simply view B, J; and J, as k-vector spaces.) But by the Nakayama
Lemma, 2"~ € 2"~!.m implies 2"~! = 0, which contradicts our choice of . We conclude that
z € m?; hence z € m?, and we are done. O

The conclusion of this theorem does not hold over fields of positive characteristic. For
example, if char(k) = p > 0 then the group schemes p, , and «, ) are not reduced, hence not
smooth over k. (The argument of the above proof breaks down if n is divisible by p.)

§3. Cartier duality.

(3.21) Cartier duality of finite commutative group schemes. We now discuss some aspects of
finite commutative group schemes that play an important role in the study of abelian varieties.
In particular, the Cartier duality that we shall discuss here comes naturally into play when we
discuss the dual of an abelian variety; see Chapter 7.

The Cartier dual of a group scheme can be defined in two ways: working functorially or
working with the underlying Hopf algebras. We first give two constructions of a dual group;
after that we prove that they actually describe the same object.

The functorial approach is based on the study of characters, by which we mean homo-
morphisms of the group scheme to the multiplicative group G,,. More precisely, suppose G is
any commutative group scheme over a basis S. Then we can define a new contravariant group
functor Hom(G, G, s) on the category of S-schemes by

Hom (G, Gy, 5): T +— HomGsch/T(GT, Gm.1) -

Next we define a dual object in terms of the Hopf algebra. For this we need to assume
that G is commutative and finite locally free over S. As in (3.9) above, write A := 7,O¢. This
A is a finite locally free sheaf of Og-modules which comes equipped with the structure of a
sheaf of co-commutative Og-Hopf algebras. (Recall that all our Hopf algebras are assumed to
be commutative.) Thus we have the following maps:

algebra structure map a: Og — A, augmentation ée: A— Og,
ring multiplication wA®Ros A— A, co-multiplication m: A — A®o4 A,
co-inverse A A.

We define a new sheaf of co-commutative Og-Hopf algebras AP as follows: first we set
AP .= Homop4(A,Og) as an Og-module. The above maps induce Og-linear maps

aP: AP — Og, éP: 0g — AP |
pP: AP — AP o, AP mP: AP @0, AP — AP,
P AP — AD

We give AP the structure of a sheaf of Og-algebras by defining /m” to be the multiplication and

éP to be the algebra structure morphism. Next we define a Hopf algebra structure by using

D D

p” as the co-multiplication, iP as the co-inverse, and P as the co-unit. We leave it to the
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reader (Exercise (3.8)) to verify that this gives AP a well-defined structure of a co-commutative
Ogs-Hopf algebra. Schematically, if we write the structure maps of a Hopf algebra in a diagram

multiplication co-multiplication
antipode

algebra structure map augmentation map

then the diagram corresponding to AP is obtained from that of A by first dualizing all maps
and then reflecting in the dotted line.

We write a: A — (AP)P for the Og-linear map which sends a local section s € A(U) to the
section evg = “evaluation at s” € Homo, (Homos (A,0g), Os)(U).

CbualThn (3.22) Theorem. (Cartier Duality) Let m: G — S be a commutative S-group scheme which is
finite and locally free over S. Write A := m,O¢, and define the sheaf of co-commutative Hopf

algebras AP over Og as above. Then GP := Spec(AP) is a commutative, finite locally free
S-group scheme which represents the contravariant functor Hom(G,Gp, s): Sch/g — Gr given
by

T+ Homgsch,, (GT, G, 1) -
The homomorphism (GP)P — G induced by the map a: A — (AP)P is an isomorphism.

Proof. That GP is indeed a commutative group scheme is equivalent to saying that AP is a
sheaf of co-commutative Hopf algebras, which we have left as an exercise to the reader. That
GP is again finite and locally free over S (of the same rank as ) is clear, and so is the claim
that (GP)P — G is an isomorphism.

Note that the functor G +— GP is compatible with base-change: if T is an S-scheme and
G is a commutative, finite locally free S-group scheme then (Gr)P = (GP)r canonically. In
particular, to prove that G represents the functor Hom(G,G,, s) we may assume that the
basis is affine, say S = Spec(R), and it suffices to show that GP(S) is naturally isomorphic to
the group Homgsch 5 (G, Gy,s). As S is affine we may view A simply as an R-Hopf algebra (i.e.,
replace the sheaf A by its R-algebra of global sections).

Among the identities that are satisfied by the structure homomorphisms we have that
(6 ®@id)ern: A — R®pr A = A is the identity and that (i,id)em: A — A is equal to the
composition acé: A — R — A. In particular, if b € A is an element with m(b) = b ® b then it
follows that &(b) - b = b and that i(b) - b = é&(b). It follows that

(be A |mb)=bobl={be A|mbd)=bxb and &b)=1}.

Write A8! for this set. (Its elements are sometimes referred to as the “group-like” elements of A.)
One easily checks that A8 is a subgroup of A*.

With these remarks in mind, let us compute HomGsch/S(G, Gy,g) and GP(S). The R-
algebra homomorphisms f: R[z,x~!] — A are given by the elements b € A*, via the corre-
spondence b := f(x). The condition on b € A* that the corresponding map f is a homo-
morphism of Hopf algebras is precisely that m(b) = b ® b. Hence we find a natural bijection
Homgschs (G, G 5) . A8, and one readily verifies this to be an isomorphism of groups.
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Every R-module homomorphism AP — R is of the form evy: A — A(b) for some b € A.
Conversely, if b € A then one verifies that

evp(l) =1 <= € =1
and

evy is a ring homomorphism <=  m(b) =b®Db.

This gives a bijection GP(S) —» A8!, and again one easily verifies this to be an isomorphism of
groups. U

(3.23) Definition. Let m: G — S be a commutative S-group scheme which is finite and
locally free over S. Then we call GP the Cartier dual of G. Similarly, if f: G — G is a
homomorphism between commutative, finite locally free S-group schemes then we obtain an
induced homomorphism f?: G — GP| called the Cartier dual of f.

(3.24) Examples. 1. Take G = (Z/nZ)s. Then it is clear from the functorial description of
the Cartier dual that GP = p,, 5. Hence (Z/nZ) and p,, are Cartier dual to each other. Note
that (Z/nZ)gs and p, ¢ may well be isomorphic. For instance, if S = Spec(k) is the spectrum of
a field and if ¢ € k is a primitive nth root of 1 then we obtain an isomorphism (Z/nZ) — pn k
sending 1 to ¢. In particular, if k = k and char(k) { n then (Z/nZ); = i, 1. By contrast, if
char(k) = p > 0 and p divides n then (Z/nZ);, and p,,  are not isomorphic.

2. Let S be a scheme of characteristic p > 0. We claim that «, g is its own Cartier dual.
Of course this can be shown at the level of Hopf algebras, but the functorial interpretation is
perhaps more instructive. As Cartier duality is compatible with base-change it suffices to do
the case S = Spec([F,).

Recall that if R is a ring of characteristic p then a,(R) = {r € R | v’ = 0} with its natural
structure of an additive group. If we want to make a homomorphism a,, — G, then the most
obvious guess is to look for an “exponential”. Indeed, if r € oy, (R) then

2
,
eXp(?”)=1+r+§+---+(p_1),

is a well-defined element of R*, and r — exp(r) defines a homomorphism «a,(R) — G,,(R). Now
remark that «, (like G,) is not just a group scheme but has a natural structure of a functor
5 = HomShGr/Fp (a, Gyy,) is obtained by sending a point
€ € ap(T) (where T is an F,-scheme) to the homomorphism of group schemes o, 7 — G 1

given (on points with values in T-schemes) by x — exp(§ - ).

in rings. The self-duality o, — «

3. After the previous example, one might guess that a,~ is self-dual for all n. This is not
the case. Instead, (a,n)P can be described as the kernel of Frobenius on the group scheme W,
of Witt vectors of length n. See Oort [3], § 10. For a special case of this, see also Exercise 77.

§4. The component group of a group scheme.

If X is a topological space then my(X) denotes the set of connected components of X. The
purpose of this section is to discuss a scheme-theoretic analogue of this for schemes that are
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locally of finite type over a field k. To avoid confusion we shall use the notation my in the
topological context and wy for the scheme-theoretic analogue.

If X/k is locally of finite type then wg(X) will be an étale k-scheme, and X +— wo(X) is
a covariant functor. Furthermore, if G is a k-group scheme, locally of finite type over k, then
wo (@) inherits a natural structure of a group scheme; it is called the component group (scheme)
of G.

We start with some generalities on étale group schemes. Let us recall here that, according
to our conventions, an étale morphism of schemes f: X — Y is only required to be locally of
finite type; see 77.

(3.25) Etale group schemes over a field. Let k be a field. Choose a separable algebraic closure k,
and write I'y, := Gal(ks/k). Then T'y is a pro-finite group, (see Appendix ??) and Galois theory
tells us that L +— Gal(ks/L) gives a bijection between the field extensions of k inside ks and the
closed subgroups of I'y. Finite extensions of k correspond to open subgroups of I'y. A reference
is Neukirch [1], Sect. 4.1.

By a I'p-set we mean a set Y equipped with a continuous left action of I'y; the continuity
assumption here means that all I'p-orbits in Y are finite.

Let S := Spec(k). If X is a connected étale scheme over S, then X is of the form X =
Spec(L), with L a finite separable field extension of k. An arbitrary étale S-scheme can be written
as a disjoint union of its connected components, and is therefore of the form X = Il,¢; Spec(L,,),
where [ is some index set and where k C L, is a finite separable extension of fields. Hence the
description of étale S-schemes is a matter of Galois theory. More precisely, if Et/, denotes the
category of étale k-schemes there is an equivalence of categories

Et/r =, (Fk—sets) .

associating to X € Et/, the set X (k) with its natural I'y-action. To obtain a quasi-inverse,
write a I'y-set Y as a union of orbits, say Y = I,e;(T'x - Ya), let & C L, be the finite field
extension (inside k) corresponding to the open subgroup Stab(y,) C 'y, and associate to Y the
S-scheme I1,¢; Spec(L,,). Up to isomorphism of S-schemes this does not depend on the chosen
base points of the I'p-orbits, and it gives a quasi-inverse to the functor X — X (k).

This equivalence of categories induces an equivalence between the corresponding categories
of group objects. This gives the following result.

(3.26) Proposition. Let k C ks and I'y, = Gal(ks/k) be as above. Associating to an étale
k-group scheme G the group G(ks) with its natural I'i-action gives an equivalence of categories

étale eq (F rou S)
L (To-
k-group schemes k-BTOUPS)

where by a I'y-group we mean an (abstract) group equipped with a continuous left action of Ty,
by group automorphisms.

The proposition tells us that every étale k-group scheme G is a k-form of a constant group
scheme. More precisely, consider the (abstract) group M = G(ks). Then we can form the
constant group scheme My over k, and the proposition tells us that G ® ks =2 My @ ks. If G
is finite étale over k then we can even find a finite separable field extension k& C K such that
G = Mpg. So we can think of étale group schemes as “twisted constant group schemes”.
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For instance, if char(k) is prime to n then p, is a finite étale group scheme, and pu, (k) is
(non-canonically) isomorphic to Z/nZ. The action of I'y, on p, (k) is given by a homomorphism
X: T — (Z/nZ)*; here the rule is that if ( € ks is an n-th root of unity and o € I'y then
o¢ = (x0),

Now we turn to the scheme wg(X) of connected components of X.

(3.27) Proposition. Let X be a scheme, locally of finite type over a field k. Then there is
an étale k-scheme wqy(X) and a morphism q: X — wq(X) over k such that q is universal for k-
morphisms from X to an étale k-scheme. (By this we mean: for any k-morphism h: X — Y with
Y/k étale, there is a unique k-morphism g: wy(X) — Y such that h = goq.) The morphism q
is faithfully flat, and its fibres are precisely the connected components of X.

Before we give the proof, let us make the last assertion more precise. If P is a point of
wo(X) then { P} is a connected component of wy(X), as the topological space of an étale scheme
is discrete. The claim is then that ¢—!(P), as an open subscheme of X, is a connected component
of X, for all points P € |w0(X)‘.

geom

Proof. Consider the set 75" (X) = Wg(\X Rk k:g\) with its natural action of I'j,. First we show
that the action of I'y, is continuous. Let € C X}, be a connected component. Let  C X be the
connected component containing the image of ¢ under the natural morphism X — X. Then
% is one of the connected components of ¥ ®; ks. But &, being connected and locally of finite
type over k, has only finitely many geometric components; see EGA IV, Prop. (4.5.15). Hence
indeed the I'y-orbit of € inside 75" (X)) is finite.

Define
o™ (X) =[]  Spec(ks),
aEW%eom(X)
the disjoint union of copies of Spec(k;), one copy for each element of 75°™(X). Consider the

morphism ¢&8°™: X, — w§*™(X) that on each connected component X(®) C X, is given

by the structural morphism X(® — Spec(k,)(®). (So a point P € X}, is sent to the copy of
Spec(ks) labelled by the component of X that contains P.) Because the I'y-action on the
set m5°°™ (X)) is continuous, there is an étale k-scheme wg(X) such that we have an isomorphism
B: wo(X)(ks) — 5™ (X) of sets with Galois action. Up to isomorphism of k-schemes, this
scheme is unique, and we have a unique isomorphism wq(X) ® ks — wg ™™ (X) that gives the
identity on ks-valued points. (Here we fix the identification 3.) Then ¢8°°™ can be viewed as a
morphism

qgoom: X ®k ks - WO(X) ®k ks )

which is I'y-equivariant. By Galois descent this defines a morphism ¢: X — wg(X) over k. (See
also Exercise (3.9).)

Next we show that the fibres of ¢ are the connected components of X. Over kg this is clear
from the construction. Over k it suffices to show that distinct connected components of X are
mapped to distinct points of wy(X). But the connected components of X correspond to the
I'g-orbits in 75" (X), so the claim follows from the result over k.

We claim that the morphism ¢: X — wy(X) has the desired universal property. To see
this, suppose h: X — Y is a k-morphism with Y/k étale. Then Y ®j ks is a disjoint union
of copies of Spec(ks). It readily follows from our construction of wy(X) and ¢ that there is
a unique morphism ¢&°™: wy(X) Qk ks — Y ®j ks such that h&°™: X — Y}, factors as
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hgeom = gseom, ggeom - ©Moreover, g8°°™ is easily seen to be Galois-equivariant; hence we get the
desired morphism g¢: wo(X) — Y with h = gegq.

Finally we have to show that ¢ is faithfully flat. But this can be checked after making a
base change to kg, and over k; it is clear from the construction. ]

(3.28) In the situation of the proposition, we refer to wy(X) as the scheme of connected com-
ponents of X. If f: X — Y is a morphism of schemes that are locally of finite type over k then
we write wo(f): wo(X) — we(Y) for the unique morphism such that gy o f = wo(f)oqx: X —
@o(Y).

(3.29) Let G be a k-group scheme, locally of finite type. The connected components of Gy are

geometrically connected; see EGA IV, Prop. (4.5.21). Therefore 7§°”™ (G) := m(|Gy.|) is equal

to 7o (|Gz|). The natural map ¢8°°™: G(k) — n§"°™(G) is surjective and has G°(k) as its kernel.

As GY(k) is normal in G(k), the set 75°°™(G) inherits a group structure such that ¢&°°™ is a
geom

homomorphism. It is clear from the construction that Aut(k/k) acts on 7§°*™(G) through group
automorphisms. On the other hand, this action factors through Aut(k/k) — Gal(ks/k) =: T'y;

hence we find that T’ acts on 75" (@) through group automorphisms.
We can view @™ (G) as the constant group scheme associated to the abstract group

5" (@), and because 'y acts on 75°""(G) through group automorphisms, the étale scheme

wo(G) over k inherits the structure of a k-group scheme. It is clear from the constructions that
q&o™: Gy, — wi™"(G) is a I'y-equivariant homomorphism of group schemes. It follows that
q¢: G — wp(@G) is a homomorphism of k-group schemes.

The conclusion of this discussion is that wy(G) has a natural structure of an étale group
scheme over k, and that ¢: G — wy(G) is a homomorphism. We refer to wy(G) as the component
group scheme of G.

Another way to show that wy(G), for G a k-group scheme, inherits the structure of a group
scheme is to use the fact that wy(G x G) = wo(G) X wo(G); see Exercise 3.10. The group

law on w(G) is the map
wo(m): wo(G Xk G) = wo(G) Xk wo(G) — wo(G)

induced by the group law m: G x; G — G.

Exercises.

(3.1) Show that the following definition is equivalent to the one given in (3.7): If G is a group
scheme over a basis S then a subgroup scheme of G is a subscheme H C G such that (a) the
identity section e: S — G factors through H; (b) if j: H — G is the inclusion morphism then
the composition i0j: H — G — G factors through H; (c) the composition mo(jxj): HxgsH —
G xg G — @G factors through H.

(3.2)

(i) Let G be a group scheme over a perfect field k. Prove that the reduced underlying scheme
Grea — G is a closed subgroup scheme. [Hint: you will need the fact that Gred Xk Grea iS
again a reduced scheme; see EGA 1V, § 4.6. This is where we need the assumption that k
is perfect.]

(ii) Show, by means of an example, that G eq is in general not normal in G.
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(iii) Let k be a field of characteristic p. Let a € k, and set G := Spec (k[x]/(mp2 + az?)). Show
that G is a subgroup scheme of G, = Spec (k[z]).

(iv) Assume that k is not perfect and that a € &k \ k. Show that |G|, the topological space
underlying G, consists of p closed points, say |G| = {Q1,Q2,...,Qp}, where Q; = e is
the origin. Show that G is reduced at the points @; for i = 2,...,p but not geometrically
reduced. Finally show that the reduced underlying subscheme G..q — G is not a subgroup
scheme.

(3.3) Prove the relations (1) and (2) in (3.9). Also prove relation (6) in the proof of Theo-
rem (3.20).

(3.4) Let G be a group scheme over a field k. Write T = Ker(G(k[e]) — G(k)) for the
tangent space of G at the identity element. Show that the map Te(m): Tg.. X Ta,e — Ta.e
induced by the group law m: G x, G — G on tangent spaces (the “derivative of m at €”) is
given by T.(m)(a,b) = a + b. Generalize this to group schemes over an arbitrary base.

(3.5) Let k be a field.
(i) If f: Gy — G4 is a homomorphism of k-group schemes, show that

TKer(f),e = Ker(TE(f): TGl,e - TG275) :

(ii) If char(k) =p > 0, write G[F] C G for the kernel of the relative Frobenius homomorphism
Fg/ki G — G(p) Show that TG[F],@ = TG,e-

(iii) If G is a finite k-group scheme and char(k) = p, show that G is étale over k if and only if
Fg i, is an isomorphism. [Hint: in the “only if” direction, reduce to the case that k = k.

(3.6) Let S = Spec(R) be an affine base scheme. Let G = Spec(A) be an affine S-group scheme
such that A is free of finite rank as an R-module. Choose an R-basis eq,...,eq for A, and
define elements a;; € A by m(e;) = Zle e; @ a;;. Let R[T;;,U]/(det-U — 1) be the affine
algebra of GLg r, where det € k[T};] is the determinant of the matrix (T 5 ) Show that there is
a well-defined homomorphism of R-algebras

@Y R[TZJ,U]/(det U — 1) — A

with T;; — a;;. Show that the corresponding morphism G — GLg4 g is a homomorphism and
gives an isomorphism of G' with a closed subgroup scheme of GLg r. [Hint: write My r for the
ring scheme over R of d x d matrices. First show that we get a morphism f: G — Mgy g such
that f(g192) = f(g1)f(g2) for all g1, go € G. Next show that f(eq) is the identity matrix, and
conclude that f factors through the open subscheme GLg r C Mg . Finally show that ¢ is
surjective. Use the relations between 1m, € and .]

(3.7) Let k be a field of characteristic p. Consider the group variety G := GLgx. Let A =

Spec (k[T;;,U]/(det -U — 1)) be its affine algebra. Recall that we write [n]g: G — G for the

morphism given on points by g — g".

(i) Let I C A be the augmentation ideal. Let [p]: A — A be the homomorphism of k-algebras
corresponding to [p]g. Show that [p](I) C IP.

(ii) Let H = Spec(B) be a finite k-group scheme. Let J C B be the augmentation ideal. Show
that [p](J) C JP. [Hint: use the previous exercise.] For an application of this result, see
Exercise (4.4).
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(3.8) Let m: G — S be an affine S-group scheme. Set A := m,0O¢, so that G = Spec(A) as an
S-scheme. Let AP := Homo,(A,Og). Show that with the definitions given in (3.21), AP is a
sheaf of co-commutative Og-Hopf algebras.

(3.9) Let k be a field, k C ks a separable algebraic closure, and write I' := Gal(ks/k). Let X
be a scheme, locally of finite type over k, and let Y be an étale k-scheme. Note that I' naturally
acts on the schemes Xj_ and Yy . If o1 Xj, — Y. is a I'-equivariant morphism of schemes
over kg, show that ¢ is defined over k, i.e., there is a (unique) morphism f: X — Y over k such
that f, = . [Hint: First reduce to the case that X is affine and that X and Y are connected.
Then work on rings.|

(3.10) Let X and Y be two schemes that are locally of finite type over a field k. Let gx: X —
wo(X) and gy: Y — wo(Y) be the morphisms as in Prop. (3.27). By the universal property of
wo(X X Y), there is a unique morphism

p: wo(X X Y) — wo(X) X wo(Y)

such that peq(xxy) = (gxe°Prx,qy°pry). Show that p is an isomorphism. In particular,
conclude that if £ C K is a field extension then wy(Xg) is naturally isomorphic to wo(X)xk.
[Hint: Reduce to the case k = ks. Use that if C' and D are connected schemes over ks then C X,
D is again connected. See EGA IV, Cor. (4.5.8), taking into account loc. cit., Prop. (4.5.21).]

Notes. Proposition (3.17) is taken from SGA 3, Exp. VI5. The example following Proposition (3.12) is taken
from ibid., Exp. VIg, §5. A different proof of Prop. (3.27) can be found in the book of Demazure and Gabriel [1].
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Chapter 1IV. Quotients by group schemes.

When we work with group schemes the question naturally arises if constructions from group
theory can also be carried out in the context of group schemes. For instance, we have seen
that if f: G — G’ is a homomorphism then we can form the kernel group scheme, Ker(f). In
this example the geometry and the group theory go hand in hand: there is an obvious scheme-
theoretic candidate for the kernel, namely the inverse image of the identity section of G’, and
this candidate also represents the kernel as a functor.

The present chapter is devoted to the formation of quotients, which is more delicate. (Nog
aanvullen)

The reader who wants to go on as quickly as possible with the general theory of abelian
varieties, may skip most of this chapter. The only results that are directly relevant for the
next chapters are the formation of quotients modulo finite group schemes, Thm. (4.16), Exam-
ple (4.40), and the material in § 4.

§1. Categorical quotients.

(4.1) Definition. (i) Let G be a group scheme over a basis S. A (left) action of G on an
S-scheme X is given by a morphism p: G xg X — X such that the composition

X S Sxg X XX ay o x 2L X
is the identity on X, and such that the diagram

GXSGXSX

mxidxl lp (1)
GxgX -, X

idgXp

GXSX

is commutative. In other words: for every S-scheme T, the morphism p induces a left action of
the group G(T') on the set X(T'). We usually denote this action on points by (g,z) — g - x.
(ii) Given an action p as in (i), we define the “graph morphism”

U=U,:=(ppry): GxgX — X xgX;

on points this is given by (g,z) — (g - z,x). The action p is said to be free, or set-theoretically
free if ¥ is a monomorphism of schemes, and is said to be strictly free, or scheme-theoretically
free, if ¥ is an immersion.

(iii) If T is an S-scheme and x € X (T') then the stabilizer of x, notation G,, is the subgroup
scheme of G that represents the functor 77 +— {g € G(T") | g - * = x} on T-schemes T". (See
also (4.2), (iii) below.)

(4.2) Remarks. (i) In some literature the same terminology is used in a slightly different
meaning (cf. GIT, for example).

QuoGrSch, 8 februari, 2012 (635)

49 —



GrActExa

QuotistExa

(ii) The condition that an action p is free means precisely that for all T and all x € X (T)
the stabilizer G, is trivial.
(iii) With notations as in the definition, we have a diagram with cartesian squares

G, < Gpr=GxgT 99 Gx¢X

1 I I

v PN N = X kg T AN X kg X
where the morphism a, is given by a, = (po(idg X x),pry); on points: a,(g) = ¢ - . That the
functor 77 — {g € G(T") | g - © = x} is indeed representable by a subgroup scheme G, C Gr is
seen from this diagram, arguing as in (3.13).

(4.3) Examples. If G is a group scheme over S and H C G is a subgroup scheme then the
group law gives an action of H on GG. The graph morphism V: H xg G — G xg G is the
restriction to H X g G of the universal right translation 7: G xg¢ G — G xg G. Since 7 is an
isomorphism, the action is strictly free.

More generally, if f: G — G’ is a homomorphism of group schemes then we get a natural
action of G on G’, given on points by (g,¢’) — f(g) - ¢’. The action is free if and only if Ker(f)
is trivial, but if this holds the action need not be strictly free. For instance, with S = Spec(Q)
as a base scheme, take G = Zg to be the constant group scheme defined by the (abstract)
group Z, and take G’ = G, g. We have a natural homomorphism f: Zg — G, g which, for
Q@-schemes T, is given on points by the natural inclusion Z < T'(T, O7). This homomorphism f
is injective, hence it gives a free action of Zg on G, s. The graph morphism can be described
as the morphism

v [TAY — A
neE”Z
that maps the nth copy of Al to the line L C A? given by z — y = n. But this ¥ is not an
immersion (the image is not a subscheme of A?), so the action is not strictly free.

(4.4) The central issue of this chapter is the following question. Given a group scheme G acting
on a scheme X, does there exist a good notion of a quotient space G\ X ? As particular instances
of this question we have: given a homomorphism of group schemes f: G — G', can we form
a cokernel of f?7, and if N C G is a normal subgroup scheme, can we define a quotient group
scheme G/N?

Let us first look at an elementary example. Take an integer N > 2, and consider the
endomorphism f: G,, — G,, over S = Spec(Z) given on points by ¢ — ¢"¥. The kernel of f
is pn, by definition of the latter. As a morphism of schemes, f is faithfully flat, and if &
is any algebraically closed field then f is surjective on k-valued points. Therefore we would
expect that the cokernel of f is trivial, i.e., Coker(f) = S. But clearly, the “cokernel functor”
C: T — Gup(T)/f(G,,(T)) is non-trivial. E.g., C(Q) is an infinite group. Moreover, from the
fact that C(Q) # {1} but C(Q) = {1} it follows that C is not representable by a scheme. So,
in contrast with (3.13) where we defined kernels, the geometric and the functorial point of view
do not give to the same notion of a cokernel.

The first notion of a quotient that we shall define is that of a categorical quotient. Though
we are mainly interested in working with schemes, it is useful to extend the discussion to a more
general setting.
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(4.5) Definition. Let C be a category with finite products. Let G be a group object in C'. Let
X be an object of C. Throughout, we simply write X (7T') for hx(T) = Hom¢ (T, X).

(i) A (Ieft) action of G on X is a morphism p: G x X — X that induces, for every object T,
a (left) action of the group G(T') on the set X (7).

(ii) Let an action of G on X be given. A morphism ¢: X — Y in C is said to be G-invariant
if gop=qopry: G x X — Y. By the Yoneda lemma this is equivalent to the requirement that
for every T' € C, if 1, x5 € X(T) are two points in the same G(T)-orbit then ¢(z1) = q(z2)
in V(7).

(iii) Let f,g: W = X be two morphisms in C. We say that a morphism h: X — Y is a
difference cokernel of the pair (f,g) if hof = hog and if h is universal for this property; by
this we mean that for any other morphism A’: X — Y’ with h'of = h’og there is a unique
a:Y — Y’ such that b’ = aoh.

(iv) Let p: G x X — X be a left action. A morphism ¢: X — Y is called a categorical
quotient of X by G if ¢ is a difference cokernel for the pair (p,pry): GXxX = X. In other words, ¢
is a categorical quotient if ¢ is G-invariant and if every G-invariant morphism ¢’: X — Y’ factors
as ¢’ = aoq for a unique a: Y — Y’. The morphism ¢: X — Y is called a universal categorical
quotient of X by G if for every object S of C' the morphism gg: Xg — Yg is a categorical
quotient of Xg by G5 in the category C/g.

In practice the morphism ¢ is often not mentioned, and we simply say that an object Y is
the categorical quotient of X by G. Note that if a categorical quotient ¢: X — Y exists then it
is unique up to unique isomorphism.

(4.6) Examples. As in (4.4), let S = Spec(Z) and let G = G,, g act on X = G, s by
p(g,) = g~ - 2. If k = k then X (k) consists of a single orbit under G(k); this readily implies
that X — S is a categorical quotient of X by G. In fact, if we work a little harder we find that
X — S is even a universal categorical quotient; see Exercise (4.1).

As a second example, let k& = k and consider the action of G = G on X = Al given
on points by p(g,x) = g - x. There are two orbits in X (k), one given by the origin 0 € X (k),
the other consisting of all points z # 0. Suppose we have a G-invariant morphism ¢: X — Y
for some k-scheme Y. It maps X (k) \ {0} to a point y € Y (k). Because X (k) \ {0} is Zariski
dense in X we find that ¢ is the constant map with value y. This proves that the structural
morphism X — Spec(k) is a categorical quotient of X by G. We conclude that it is not possible
to construct a quotient scheme Y such that the two orbits {0} and A®\ {0} are mapped to
different points of Y.

(4.7) Remark. Let G be an S-group scheme acting on an S-scheme X. Suppose there exists
a categorical quotient ¢: X — Y in Sch,g. To study ¢ we can take Y to be our base scheme.
More precisely, Gy := G xgY acts on X over Y and q is also a categorical quotient of X by Gy
in the category Sch,y. Taking Y to be the base scheme does not affect the (strict) freeness of
the action. To see this, note that the graph morphism V: G xg X — X xg X factors through
the subscheme X xy X — X xg X and that the resulting morphism

Gy Xy X =G xg X - X xy X

is none other than the graph morphism of Gy acting on X over Y. Hence the action of G on X
over S is (strictly) free if and only if the action of Gy on X over Y is (strictly) free.
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§2. Geometric quotients, and quotients by finite group schemes.

We first give, in its simplest form, a result about the existence of quotients under finite groups.
This result will be generalized in (4.16) below. Here we consider an action of an abstract group I
on a scheme X; this means that for every element v € I' we have a morphism p(v): X — X,
satisfying the usual axioms for a group action. Such an action is the same as an action of the
constant group scheme I" on X; hence we are in a special case of the situation considered in (4.1).

(4.8) Proposition. Let I' be a finite (abstract) group acting on an affine scheme X = Spec(A).
Let B := A' C A be the subring of I'-invariant elements, and set Y := Spec(B).

(i) The natural morphism q: X — Y induces a homeomorphism T'\|X| = |Y|, i.e., it
identifies the topological space |Y'| with the quotient of | X| under the acion of T.

(i) The map ¢*: Oy — ¢.Ox induces an isomorphism Oy — (q.Ox )", where the latter
denotes the sheaf of I'-invariant sections of q,.Ox.

(iii) The ring A is integral over B; the morphism q: X — Y is quasi-finite, closed and
surjective.

Proof. Write I' = {71, ...,7,}. Define the map N: A — A" = B by

N(a) =m(a)---7(a).

If p and p’ are prime ideals of A which lie in the same I'-orbit then pn A" = p’N A", Conversely,
if pN Al = p’ N AL then N(z) € p’ for every z € p, so p C 1 (p’)U---U~,.(p’). This implies (see
Atiyah-Macdonald [1], Prop. 1.11) that p C ~;(p’) for some i, and by symmetry we conclude
that p and p’ lie in the same I'-orbit. Hence I'\|X| — |Y| as sets, and ¢ is quasi-finite.

For a € A, let xo(T) := (T —71(a)) (T —72(a)) - - - (T —v,(a)) € A[T]. Then it is clear that
Xa(T) is a monic polynomial in B[T| and that x,(a) = 0. This shows that A is integral over B.
That the map ¢ is closed and surjective then follows from Atiyah-Macdonald [1], Thm. 5.10; see
also (4.21) below.

Finally we remark that for every f € A' we have a natural isomorphism (AT); = (A;)L.
As the special open subsets D(f) :=Y \ Z(f) form a basis for the topology on Y, property (ii)
follows. g

(4.9) Remarks. (i) The morphism ¢: X — Y need not be finite. It may happen that A
is noetherian but that B := A' is not, and that A is not finitely generated as a B-module.
Examples of this kind can be found in Nagata [1], 7?7. However, if either the action on I" on X is
free, or X is of finite type over a locally noetherian base scheme S and I' acts by automorphisms
of X over S, then ¢ is a finite morphism. See (4.16) below.

(ii) It is not hard to show that ¢: X — Y is a categorical quotient of X by G. (See
also Proposition (4.13) below.) More generally, if X — S is a morphism such that I' acts
by automorphisms of X over S then also Y has a natural structure of an S-scheme, and q is
a categorical quotient in Sch,g. In general, q is not a universal categorical quotient. As an
example, let k be a field of characteristic p, take S = Spec (k[e]) and X = A} = Spec(4), with
A = k[z,e]. We let the group I' := Z/pZ act on X (over S); on rings we give the action of
nmod p by x — x + ne and ¢ — ¢. The ring A of invariants is generated as a k-algebra by e,
xe, ..., 2P e and 2P. But on the special fibre A,lC the action is trivial. As

AL Dkle] k= k‘[E,JL‘E, e ,xp_1€,l‘p] Bkle] k= k‘[l‘p]
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is a proper subring of -
(A Ok[e] k) = k[z],

we see that Y := Spec(Al) is not a universal categorical quotient of X in Sch /S-

(4.10) Suppose given an action of a group scheme G on a scheme X, over some basis S, say.
We should like to decide if there exists a categorical quotient of X by G in Sch/g, and if yes
then we should like to construct this quotient. Properties (a) and (b) in the above proposition
point to a general construction. Namely, if |X| is the topological space underlying X then we
could try to form a quotient of |X| modulo the action of G and equip this space with the sheaf
of G-invariant functions on X.

Another way to phrase this is the following. The category of schemes is a full subcategory of
the category LRS of locally ringed spaces, which in turn is a subcategory (not full) of the category
RS of all ringed spaces. If G is an S-group scheme acting on an S-scheme X then we shall show
that there exists a categorical quotient (G\X),s in the category RS,g. It is constructed exactly
as just described: form the quotient “G\|X|” and equip this with the sheaf “(¢.Ox)“”, where
q: | X| — G\|X| is the natural map. Then the question is whether (G\X),s is a scheme and, if
so, if this scheme is a “good” scheme-theoretic quotient of X modulo G.

Before we give more details, let us note that in general (G\X),s cannot be viewed as
a categorical quotient in the sense of Definition (4.5). Namely, because Sch,g is not a full
subcategory of RS g, products in the two categories may be different. Hence if G is an S-group
scheme then it is not clear if the ringed space (|G l, Og) inherits the structure of a group object
in RS/g. The assertion that (G'\ X ), is a quotient of X by G will therefore be interpret as saying
that the morphism ¢ is a difference cokernel of the pair of morphisms (p,pry): G xg X = X
in RS/S

(4.11) Lemma. Let p: G xg X — X be an action of an S-group scheme G on an S-scheme X .
Consider the continuous maps

pryl |G xs X| — [X|  and o |G xs X| — |X].

Given P, Q € |X|, write P ~ Q if there exists a point R € |G xg X| with |pry|(R) = P and
|p|(R) = Q. Then ~ is an equivalence relation on | X|.

Proof. See Exercise (4.2).

We refer to the equivalence classes under ~ as the G-equivalence classes in | X|.

(4.12) Definition. Let p: GxgX — X be an action of an S-group scheme G on an S-scheme X.
Let | X |/~ be the set of G-equivalence classes in | X|, equipped with the quotient topology. Write
q: |X| — |X|/~ for the canonical map. Let U = ¢~1(V) for some open subset V C |X|/~. If
f € q.0x(V)=0x(U) then we can form the elements prg{(f) and p*(f) in Ogxsx(G x5 U).
We say that f is G-invariant if prg(( f) = p*(f). The G-invariant functions f form a subsheaf of
rings (Q*OX)G C ¢.0x.

We define

(G\X)ys := (‘X|/N> (Q*OX)G) )

and write ¢: X — (G\X),s for the natural morphism of ringed spaces.

If (G\X),s is a scheme and ¢ is a morphism of schemes then we say that it is a geometric
quotient of X by G. If moreover for every S-scheme T we have that (G\X),s XsT = (G \X7)1s
then we say that (G\X),s is a universal geometric quotient.
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The phrase “if a geometric quotient of X by G exists” is used as a synonym for “if (G\X),s
is a scheme and ¢: X — (G\X),s is a morphism of schemes”.

The stalks of the sheaf (¢,Ox)® may not be local rings; for an example see ??. This is
the reason why we work in the category of ringed spaces rather than the category of locally
ringed spaces. Further we note that the formation of (G\X),s does not, in general, commute
with base change; see (ii) of (4.9). However, if U C S is a Zariski open subset then (Gy\Xv)s
is canonically isomorphic to the restriction of (G\X),s to U.

(4.13) Proposition. In the situation of (4.12), ¢: X — (G\X),s Is a difference cokernel of the
pair of morphisms (p,pry): G xs X = X in the category RS,g. By consequence, if a geometric
quotient of X by G exists then it is also a categorical quotient in Schg.

Proof. The first assertion is an immediate consequence of how we constructed (G\X),s. If
(G\X),s is a geometric quotient then it is also a difference cokernel of (p,pry) in the category
Sch/s because the latter is a subcategory of RS,g. This gives the second assertion. O

(4.14) Example. Let k be a field, and consider the k-scheme My j (=A%) of 2 x 2-matrices
over k. The linear algebraic group GLj j acts on Ms ; by conjugation: if g € GLy(7") for some
k-scheme T then g acts on Ma(T) by A — g- A-g~'. Write p: GLo g X Moy — Ma for the
morphism giving this GLg j-action.

The trace and determinant give morphisms of schemes trace: My ,, — A,lg and det: My ;, —
Aj}. Now consider the morphism

p = (trace,det): My — A .

Clearly p is a GLg-invariant morphism, i.e., popry: GLo g X Mgy — Ma ;, — A7 is the same as
pop. It can be shown that the pair (AZ, p) is a (universal) categorical quotient of M j, by GLg
see GIT, Chap. 1, § 2 and Appendix 1C.

On the other hand, it is quite easy to see that A? is not a geometric quotient. Indeed, if
this were the case then on underlying topological spaces the map p should identify A? as the set
of GLy i-orbits in My ;. But the trace and the determinant are not able to distinguish a matrix

»e (3 )
G3)

To give another explanation of what is going on, let us look at k-valued points, where k is

from its semi-simple part

an algebraic closure of k. The theory of Jordan canonical forms tells us that the GLy(k)-orbits in
M, (k) are represented by the diagonal matrices diag(\1, A\2) together with the matrices .Jy. For
7,6 € k, write N(7,0) C M, 7. for the 2-dimensional subvariety given by the conditions trace = 7
and det = J. By direct computation one readily verifies that (i) the orbit of a diagonal matrix
A = diag(\, \) is the single closed point A; (ii) the orbit of a diagonal matrix diag(\1, A2) with
A1 # A equals N (A1 + A2, A1 A2); (iii) the orbit of a matrix Jy equals N(2X,A?) \ {diag(\, \)};
in particular, this orbit is not closed in Mz,E'

From the observation that there are non-closed orbits in M it immediately follows that

2.k’
there does not exist a geometric quotient. (Indeed, the orbits in Ma(k) would be the pre-

images of the k-valued points of the geometric quotient. Cf. the second example in (4.6).) This
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suggests that the points in a subvariety of the form N(2X,A\?) C My, are the “bad” points for
the given action of GLj. Indeed, it can be shown that on the open complement U C My j, given
by the condition 4 det —trace? # 0, the map p = (trace,det): U — D(4y — x?) C A? (taking
coordinates x,y on A? and writing D(f) for the locus where a function f does not vanish) makes
D(4y — z?) C A2 a geometric quotient of U.

The notion of a geometric quotient plays a central role in geometric invariant theory. There,
as in the above simple example, one studies which points, or which orbits under a given group
action are so “unstable” that they obstruct the formation of a good quotient. (Which are the
“bad” points may depend on further data, such as the choice of an ample line bundle on the
scheme in question.) We refer the reader to the book GIT.

We now turn to the promised generalization of Proposition (4.8). First we need a lemma.

(4.15) Lemma. Let ¢: A — C be a homomorphism of commutative rings that makes C' a
projective A-module of rank r > 0. Let Normg/4: C — A be the norm map. Let : Spec(C) —
Spec(A) be the morphism of affine schemes given by . If Z C Spec(C) is the zero locus of
f € C then ¥)(Z) C Spec(A) is the zero locus of Norme, 4 (f).

Proof. The assumptions imply that ¢ is injective. As C is integral over A the map 1) is surjective;
see also (4.21) below. Let p € Spec(A); write v~ {p} = {q1,...,9,}. By definition, N :=
Normey4(f) is the determinant of the endomorphism Ay: ¢ +— fc of C as a module over A.

Write W C Spec(A) for the zero locus of N. Write a, for the image of an element a € A
in Ap; similar notation for elements of C'. Then we have

p¢gW < N, € A}
&= A p: Cp — O is an isomorphism
— frely
«— féqforalli=1,...,n
—q ¢ Zforalli=1,...,n,

which proves the lemma. O

(4.16) Theorem. (Quotients by finite group schemes.) Let G be a finite locally free S-group
scheme acting on an S-scheme X. Assume that for every closed point P € | X| the G-equivalence
class of P is contained in an affine open subset.

(i) The quotient Y := (G\X),s is an S-scheme, which therefore is a geometric quotient of X
by G. The canonical morphism q: X — Y is quasi-finite, integral, closed and surjective. If S is
locally noetherian and X is of finite type over S then q is a finite morphism and Y is of finite
type over S, too.

(ii) The formation of the quotient Y is compatible with flat base change (terminology: Y
is a uniform quotient). In other words, let h: S’ — S be a flat morphism. Let a prime’ denote
a base change via h, e.g., X' := X xg5’. Then Y' = (G'\X'),s.

(iii) If G acts freely then q: X — Y is finite locally free and the morphism

G XE;}( — X ny)(

induced by ¥ = (p,pry ) is an isomorphism. Moreover, Y is in this case a universal geometric
quotient: for any morphism h: S’ — S, indicating base change via h by a prime ’, we have
Y= (GN\X')s.
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(4.17) Remarks. (i) The condition that every G-equivalence class is contained in an affine open
subset is satisfied if X is quasi-projective over S. Indeed, given a ring R, a positive integer N,
and a finite set V of closed points of P¥, we can find an affine open subscheme U C P¥ such
that V C U.

(i) In the situation of the theorem we find that a free action is automatically strictly free.
Indeed, by (iii) the graph morphism ¥ gives an isomorphism of G xg X with the subscheme
X xy X C X xg X; hence ¥ is an immersion.

We break up the proof of the theorem into a couple of steps, (4.18)—(4.26).

(4.18) Reduction to the case that S is affine. Suppose S = U,U, is a covering of S by Zariski
open subsets. As remarked earlier, the restriction of (G\X),s to U = U, is naturally isomorphic
to (Gu\Xv)s- If we can prove the theorem over each of the open sets U, then the result as stated
easily follows by gluing. In the rest of the proof we may therefore assume that S = Spec(Q) is
affine and that the affine algebra R of G is free of some rank r as a -module.

(4.19) Reduction to the case that X is affine. If P € | X|, let us write G(P) for its G-equivalence
class; note that this is a finite set. Note further that

G(P) = p(prx'{P}) = prx(p~{P}),

by definition of G-equivalence. (Strictly speaking we should write |p| and |pry]|.)

Say that a subset V' C |X| is G-stable if it contains G(P) whenever it contains P. If V is
open then there is a maximal open subset V' C V' which is G-stable. Namely, if Z := |X|\ V
then Z' :=pry (p~'{Z}) is closed (since pry: G xg X — X is proper), and V' := |X|\ Z’ has
the required property.

We claim that X can be covered by G-stable affine open subsets. It suffices to show that
every closed point P € X has a G-stable affine open neighbourhood. By assumption there exists
an affine open V. C X with G(P) C V. Then also G(P) C V'. As G(P) is finite there exists
an f € I'(V,Oy) such that, writing D(f) C V for the open subset where f does not vanish,
G(P) C D(f) CV'. In total this gives

G(P)Cc D(f)) CD(fycv' CcV.

Our claim is proven if we can show that D(f)" is affine. Write f’ for the image of f
in I'(V/,0v+), so that Z := V' \ D(f) is the zero locus of f’. As V' is G-stable we have
p Y (V') = G x5 V', which gives an element p?(f’) € T'(G xs V',Ogxsv'). The zero locus of
Pt (f") is of course just p~1(Z) C G xg V'. As G is finite locally free, the morphism pry makes
F(G xg V', OGXSV’) into a projective module of finite rank over F(V’, va). This gives us a
norm map

Norm: F(G Xg VluOGXsV’) — F(V’,OV/) .

Let F := Norm(p*(f’)). By Lemma (4.15), the zero locus of F is the image of p~*(Z) under the
projection to V’. But the complement of this locus in V"’ is precisely D(f)’. Hence if F’ is the
image of F in T'(D(f), Opy)) then D(f)" is the open subset of D(f) where F” does not vanish.
As this subset is affine open, our claim is proven.

Except for the last assertion of (i), the proof of the theorem now reduces to the case that
X is affine. Namely, by the previous we can cover X by G-stable affine open subsets, and if the
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theorem is true for each of these then by gluing we obtain the result for X. The last assertion
of (i) will be dealt with in (4.23).

(4.20) From now on we assume that X = Spec(A) — S = Spec(Q). Further we assume that
G = Spec(R) for some @Q-Hopf algebra R which is free of rank r as a module over Q. Much
of what we are going to do is a direct generalization of the arguments in (4.8); that proof may
therefore serve as a guide for the arguments to follow.

The action of G on X is given by a -algebra homomorphism 0: A — R ®g A. Write
j: A — R®q A for the map given by a — 1 ® a. (In other words, we write o for pf and j
for prg{.) Define a subring B := A% C A of G-invariants by

B:={a€A|o(a)=j(a)}.

We are going to prove that Y := Spec(B) is the geometric quotient of X under the given action
of G.

As a first step, let us show that A is integral over B. For a € A, multiplication by o(a) is
an endomorphism of R ®g A, and we can form its characteristic polynomial

X =t ettt € Alt].

We have cartesian squares

m®id
—_—

R®g A R®q R®qg A RogA 27, Reo R A
jT szs and jT TjZﬁ (2)
A —L .  RgeA A —2—  RegA,

where the map js 3 is given by r® a — 1 ®@ 7 ® a. We view R ®g R ®¢g A as a module over
R ®¢q A via ja 3. It follows from the left-hand diagram that j(x(t)), the polynomial obtained
from x(t) by applying j to its coefficients, is the characteristic polynomial of m®id 4 (a(a)). The
right-hand diagram tells us that a(x(t)) is the characteristic polynomial of idg ® J(U(a)). But
the commutativity of diagram (1) in Definition (4.1) gives the identity m ® ida(c(a)) = idg ®
o(o(a)). Hence j(x(t)) = o(x(t)), which means that x(t) is a polynomial with coefficients ¢;
in the ring B of G-invariants.
The Cayley-Hamilton theorem tells us that

()" +j(er-1)o(a) ™" + -+ j(er)o(a) + j(co) = 0.
As j(¢;) = o(c¢;) for all i we can rewrite this as
o(x(a)) = o(a)" + o(cr—1)o(a) ™" + -+ o(e1)o(a) + o(co) = 0. (3)

But o is an injective map, because we have the relation (€ ® id4)oo = id 4, which translates the
fact that the identity element of G acts as the identity on X. Hence (3) implies that x(a) = 0.
This proves that A is integral over B.

(4.21) The fact that A is integral over B has the following consequences.
(i) If p; C po are prime ideals of A with p; N B = py N B then p; = po. Geometrically this
means that all fibres of Spec(A) — Spec(B) have dimension 0.
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(ii) The natural map ¢: X = Spec(A) — Y = Spec(B) is surjective.

(iii) The map ¢ is closed, i.e., if C C X is closed then ¢(C) C Y is closed too.
Properties (i) and (ii) can be found in many textbooks on commutative algebra, see for instance
Atiyah-Macdonald [1], Cor. 5.9 and Thm. 5.10. For (iii), suppose C' C X is the closed subset
defined by an ideal a C A. We may identify C' with Spec(A/a). The composite map C' =
Spec(A/a) — Spec(A) — Spec(B) factors through the closed subset Spec(B/b) C Spec(B),
where b = an B. Note that A/a is again integral over its subring B/b. Applying (ii) with A
and B replaced by A/a and B/b, we find that C' = Spec(A/a) — Spec(B/b) is surjective. Hence
q(C) is the closed subset of B defined by b.

Define a map N: A — B by

N(a) = Normpg,a/4(c(a)) .

Note that N(a) = (—1)"cp, where ¢y is the constant coefficient of the characteristic polyno-
mial x(¢) considered in (4.20); hence N(a) is indeed an element of B. The relation x(a) = 0
gives

N(a) = (-1)""a-(a" ' +epo1a® 2+ +c1).

In particular, if @ € a for some ideal a C A then N(a) € an B.

(4.22) Recall that Y := Spec(B). We are going to prove that ¥ = (G\X),s. Note that the
natural map | X| — |Y| is surjective, by (ii) in (4.21).

By definition, two prime ideals p and p’ of A are in the same G-equivalence class if there
exists a prime ideal Q of R ®g A with 07*(Q) = p and j~1(Q) = p’. If such a prime ideal Q
exists then it is immediate that p N B = p’ N B, so G-equivalent points of X are mapped to the
same point of Y.

Conversely, suppose p N B = p’ N B. There are finitely many prime ideals Q1,...,Q,, of
R®¢ A with the property that 571 (Q;) = p’. (The morphism pry: GxgX — X is finite because
G is finite.) Set q; = 0~1(Q;). Note that q; N B = p N B. Our goal is to prove that p = q; for
some i. By property (i) above it suffices to show that p C g; for some i. Suppose this is not the
case. Then there exists an element a € p that is not contained in q; U---U¢q,. (Use Atiyah-
Macdonald [1], Prop. 1.11, and cf. the proof of Prop. (4.8) above.) Lemma (4.15), applied with
[ =0(a) € R®qg A, tells us that the prime ideals of A containing N (a) are all of the form j~!(x)
with v a prime ideal of R ®¢ A that contains o(a). But a € p, hence N(a) € pN B =p' N B.
Hence one of the prime ideals ; contains o(a), contradicting our choice of a.

We have now proven that the map X — Y identifies |Y'| with the set |X |/~ of G-equivalence
classes in X. Further, by (iii) in (4.21) the quotient map |X| — |Y| is closed, so the topology
on |Y| is the quotient topology. If V= Dy (f) C Y is the fundamental open subset given by
f € B then ¢=1(V) = Dx(f), and we find

Oy(V) = By = (A%); = (45)¢ = (0x(¢7 (V) = ((¢.0x)(V))

As the fundamental open subsets form a basis for the topology on Y, it follows that ¢*: Oy —

¢.Ox induces an isomorphism Oy — (¢,Ox ).

(4.23) Let us now prove the last assertion of part (i) of the theorem. As before we may assume
that S = Spec(Q) is affine. Let ¢: X — Y := (G\X),s be the quotient morphism, which we
have already shown to exist. Let U = Spec(A) be a G-stable affine open subset of X, and let
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B = A%. By construction, ¢(U) = Spec(B) is an open subset of Y, and ¢! (q(U)) =U. It X
is locally of finite type over S then A is a finitely generated Q-algebra, a fortiori also of finite
type as a B-algebra. But A is also integral over B. It follows that A is finitely generated as a
B-module (see e.g. Atiyah-Macdonald [1], Cor. 5.2). Hence ¢ is a finite morphism.

If S is locally noetherian then we may assume, arguing as in (4.18), that @ is a noetherian
ring. Choose generators a1, ...,a, for A as a Q-algebra. We have seen that for each i we can
find a monic polynomial f; € B[T] with f;(a;) = 0. Let B’ C B be the Q-subalgebra generated
by the coefficients of the polynomials f;. Then A is integral over B’, and by the same argument
as above it follows that A is finitely generated as a B’-module. Because B’ is finitely generated
over @ it is a noetherian ring. But then B C A is also finitely generated as a B’-module, hence
finitely generated as a (Q-algebra. This shows that Y is locally of finite type over S.

So far we have used only that X is locally of finite type over S. Assume, in addition, that
the morphism f: X — S is quasi-compact. Let g: Y — S be the structural morphism of Y. It
remains to be shown that ¢ is quasi-compact. But this is clear, for if V' C S is a quasi-compact
open subset then g~ 1 (V) = q(f_l(V)), which is quasi-compact because f~1(V) is.

(4.24) Proof of (ii) of the theorem. Let S’ — S be a flat morphism. We want to show that
Y':=Y xg5 is a geometric quotient of X’ by G’. Arguing as in (4.18) one reduces to the case
that S’ — S is given by a flat homomorphism of rings @ — @’. Note that every G’-equivalence
class in X’ is again contained in an affine open subset. As in (4.19) one further reduces to
the case that X, X', Y and Y’ are all affine. With notations as above we have Y = Spec(B),
where B = Ker(j — o). We want to show, writing a prime ’ for extension of scalars to @', that
B®g Q' =Ker(j —o': A ®g R' — A’ ®¢ A"). But this is obvious from the assumption that
Q — Q' is flat.

(4.25) We now turn to part (iii) of the theorem. As before, everything reduces to the situation
where S, G, X and Y are all affine, with algebras Q, R, A and B = A%, respectively, and that
R is free of rank r as a module over Q. We view R ®¢g A as an A-module via j. Let

gDZA@BA—>R®QA

be the homomorphism given by p(a; ® as) = o(a1) - j(az) = o(a1) - (1 ® az).

Assume that G acts freely on X. This means that the morphism ¥: G xg X — X xg X
is a monomorphism in the category of schemes. The corresponding map on rings is given by
U¥ = pog, where ¢: A®g A — A®p A is the natural map. Since a morphism of affine schemes
is a monomorphism if and only if the corresponding map on rings is surjective, it follows that ¢
is surjective.

Let g be a prime ideal of B and write A; = (B —q)"'A = A®p B,. Note that 4, is a
semi-local ring, because X — Y is quasi-finite. Let v C A4 be its radical. We claim that A,
is free of rank r = rank(G) as a module over By. If this holds for all q then A is a projective
B-module of rank r; use Bourbaki [2], Chap. II, § 5, Thm. 2. Furthermore, ¢ is then a surjective
map between projective A-modules of the same rank and is therefore an isomorphism.

We first prove that A, is By-free of rank r in the case where the residue field k of By is
infinite. Consider the By-submodule

N:={o(a)|ac Ay} CM :=R®q A,.

Because ¢q: Aq ®p, Aq — R ®q Aq is surjective, N spans M as an Ag-module. Therefore
N/eN spans M/tM = (Aq4/t)" as a module over Ay /v, which is a product of fields. Using that
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k is an infinite subfield of A4 /v it follows that N/tN contains a basis of M /tM over Ay/t; see
Exercise (4.3). Applying the Nakayama lemma, it follows that N contains a basis of M over Aq,
i.e., we have elements ay,...a, € Aq such that the elements ¢q(a; ®1) = o(a;) form an Ag-basis
of R®qg Ay. Hence for every a € A, there are unique coordinates x1,...,z, € A4 such that

ola) =x1-0(ar) + - +z,-0(ar) )
=(1®z)-0a)+--+1@x) 0(a,).
We view R" := R®¢g R ®q Aq as a module over R ®¢g A, via the homomorphism ja 3 given by
r®ar— 1®r®a. The diagrams (2) tell us that the elements

vi == (M ®@ida)(o(a;)) = (idr ® 0)(0(a;))
form an R ®¢ Aq4-basis of R”. Applying m ® id4 and idg ® o to (4) gives

(m®ida)(c(a)) = (1®1Qz) n+ - +(101Qz,) Y

H

(idr@o)(o(@) = (I@o(@) N+ +(1@a(@)) 7.

Hence the coordinates x; lie in B, and (4) becomes o(a) = o(r1a1 + - -+ + x,a,). But we have
seen in (4.20) that o is injective, hence a = x1ay + - -+ + z,a,. This proves that the elements
ai,...,a, span Aq as a Bg-module. On the other hand, since the map a — o(a) is By-linear,
the elements ay,...,a, are linearly independent over B,. Hence A, is free of rank r over By.

Finally we consider the case that By has a finite residue field. By what was explained in
Remark (4.7) we may assume that S =Y. Because B — By is flat we may, by (ii) of the theorem,
further reduce to the case where B = B,. Let h: B — B’ be a faithfully flat homomorphism,
where B’ is a local ring with infinite residue field; for instance we could take B’ to be a strict
henselization of B = B,. In order to show that A = A, is free of rank r over B, it suffices
to show that A’ := A ®p B’ is free of rank r over B’, see EGA IV, 2.5.2. But, again by (ii),
Spec(B’) is the quotient of Spec(A’) under the G-action obtained by base-change. Hence we are
reduced to the case treated above.

(4.26) As the final step in the proof we show that if G acts freely, Y is a universal geometric
quotient. Consider a morphism h: S’ — S. Let us indicate base change via h by a ’, so
X' = X xg 8', etc. Then G’ acts again freely on X’ and it is easy to see that every G'-
equivalence class of closed points in |X’| is contained in an affine open subset. (Since this
statement only involves the fibres of X’ we may assume that S’ is affine, in which case the
morphism X’ — X is affine.) Hence there exists a geometric quotient, say qz: X' — Z. As
Z is a categorical quotient of X’ by G’, the morphism ¢: X’ — Y’ factors as ¢’ = foqz with
f: Z —Y’'. We want to show that f is an isomorphism.

As before we may assume that G is free of rank r over S. Then X’ is free of rank r over Z
but at the same time it is free of the same rank r over Y’. But then Z has to be locally free of

rank 1 over Y’ so f: Z = Y’. This completes the proof of Theorem (4.16). O

§3. FPPF quotients.
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Consider an action of an S-group scheme G on an S-scheme X. In general there is not a simple
procedure to construct a “good” quotient of X by G in the category Sch,g. Of course we have
the notion of a categorical quotient, but this is only a “best possible approximation in the given
category”, and its definition gives no clues about whether there exists a categorical quotient
and, if so, how to describe it.

Most approaches to the formation of quotients follow the same pattern:

(a) replace the category Sch, g of S-schemes by some “bigger” category, in which the formation
of quotients is easier;

(b) form the quotient Y := G\ X in this bigger category;

(¢) study under which assumptions the quotient Y is (representable by) a scheme.

Thus, for instance, in our discussion of geometric quotients the “bigger” category that we used

was the category of ringed spaces over S.

The approach usually taken in the theory of group schemes is explained with great clarity
in Raynaud [2]. The idea is that one chooses a Grothendieck topology on the category of S-
schemes and that all objects in question are viewed as sheaves on the resulting site. The quotient
spaces that we are interested in exist as sheaves—this usually involves a sheafification—and their
construction has good functorial properties. Then it remains to be investigated under what
conditions the quotient sheaf is representable by a scheme. For the choice of the topology, a
couple of remarks have to be taken into account. First, we want our original objects, schemes,
to be sheaves rather than presheaves; this means that the topology should be no finer than the
canonical topology (see Appendix ?77). On the other hand, the finer the topology, the weaker
the condition that a sheaf is representable. Finally the topology has to be accessible by the
methods of algebraic geometry. In practice one usually works with the étale topology, the fppf
topology or the fpqc topology. We shall mostly work with the fppf topology. See (4.36) below
for further discussion.

From a modern perspective, perhaps the most natural choice for the “bigger category” in
which to work, is the category of algebraic stacks. An excellent reference for the foundations of
this theory is the book by Laumon and Moret-Bailly [1]. For general results about the formation
of quotients as algebraic spaces we recommend the papers by Keel and Mori [1] and Kollar [1].
However, at this stage in our book we shall not assume any knowledge of algebraic spaces or
stacks (though algebraic spaces will be briefly mentioned in our discussion of Picard functors in
Chap. 6).

Finally let us remark that we shall almost exclusively deal with quotients modulo a group
action, and not with more general equivalence relations or groupoids. It should be noted that
even if one is interested only in group quotients, the proofs often involve more general groupoids.

(4.27) We shall use some notions that are explained in more detail in Appendix ?77.

Let S be a scheme. We write (S)pppr for the big fppf site of S, i.e., the category Sch,g of
S-schemes equipped with the fppf topology. We write FPPF(S) for the category of sheaves on
(S)rPPF-

The fppf topology is coarser than the canonical topology; this means that for every S-
scheme X the presheaf hx = Homg(—, X) is a sheaf on (S)pppr. As explained in A?? this is
essentially a reformulation of results in descent theory. Via X +— hx we can identify Sch,s with
a full subcategory of FPPF(S). We shall usually simply write X for hx.

Denote by ShGr,s and ShAb, g the categories of sheaves of groups, respectively sheaves of
abelian groups, on (S)rppr. The category ShAb,g is abelian; ShGr,g is not abelian (excluding
S = ) but we can still speak about exact sequences. Unless specified otherwise, we shall from
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now on view the category of S-group schemes as a full subcategory of ShGr,g. For example, we
shall say that a sequence of S-group schemes

aLaLa

is exact if it is exact as a sequence in ShGr g, i.e., if Ker(1)) represents the fppf sheaf associated
to the presheaf T — Im(o(T): G'(T) — G(T)).

(4.28) Definition. Let G be an S-group scheme acting, by p: GxgX — X, on an S-scheme X.
We write (G\X)gppt, or simply G\ X, for the fppf sheaf associated to the presheaf

T G(T)\X(T).

If G\ X is representable by a scheme Y then we refer to Y (or to the quotient morphism ¢: X —
Y') as the fppf quotient of X by G.

We often say that “an fppf quotient exists” if (G\X)¢ppt is representable by a scheme. Note
that the sheaf G\ X is a categorical quotient of X by G in FPPF(.S), so we are indeed forming the
quotient in a “bigger” category. Note further that if (G\X)gps is representable by a scheme Y
then by the Yoneda lemma we have a morphism of schemes ¢: X — Y.

As we are mainly interested in the formation of quotients of a group scheme by a subgroup
scheme, we shall mostly restrict our discussion of fppf quotients to the case that the action is
free.

(4.29) Example. Consider the situation as in (iii) of Theorem (4.16). So, G is finite locally free
over S, acting freely on X, and every orbit is contained in an affine open set. Let gy: X — Y
be the universal geometric quotient, as we have proven to exist. We claim that Y is also an fppf
quotient. To see this, write Z := (G\X)gppt and write gz: X — Z for the quotient map. As Z
is a categorical quotient in FPPF(S), the morphism ¢y, viewed as a morphism of fppf sheaves,
factors as qy = roqz for some r: Z — Y. To prove that r is an isomorphism it suffices to show
that it is both a monomorphism and an epimorphism.

By (iii) of (4.16), the morphism gy is fppf. By A?? this implies it is an epimorphism of
sheaves. But then r is an epimorphism too. On the other hand, suppose 7" is an S-scheme and
suppose a, b € Z(T') map to the same point in Y (7). There exists an fppf covering 7" — T such
that a and b come from points a’, b’ € X(T”). But we know that ¥ = (p,pry): GxgX — X xy X
is an isomorphism, so there is a point ¢ € G xg X(T") with p(¢) = @’ and pry(c) = . By
construction of Z := (G\X )gpps this implies that a = b. Hence r is a monomorphism.

(4.30) The formation of fppf quotients is compatible with base change. To explain this in more
detail, suppose j: S’ — S is a morphism of schemes. Then j gives rise to an inverse image
functor j*: FPPF(S) — FPPF(S’) which is exact. Concretely, if f: T — S’ is an S’-scheme
then jof: T — S is an S-scheme, and if F' is an fppf sheaf on S then we have j*F(f: T —
S")=F(jof: T — S). In particular, on representable sheaves j* is simply given by base-change:
J*X = X xgS8". Writing X' = X xgS" and G' = G xg5’, we conclude that j*(G\X) = (G'\X")
as sheaves on (S”)pppr. Hence if ¢: X — Y is an fppf quotient over S then Y’ :=Y xg S5’ is
an fppf quotient of X’ by G’. Put differently: An fppf quotient, if it exists, is automatically a
universal fppf quotient.
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(4.31) Proposition. Let G be an S-group scheme acting freely on an S-scheme X. Suppose
the fppf sheaf (G\ X )gppr Is representable by a scheme Y. Write ¢: X — Y for the canonical mor-
phism. Then q is an fppf covering and the morphism ¥: G xg X — X Xy X is an isomorphism.
This gives a commutative diagram with cartesian squares

G X8 X SEAIEN X %(y')( lﬁlﬁ

s | s | K

X —_— X A,y

In particular, X is a G-torsor over Y in the fppf topology which becomes trivial over the covering
g X —=Y.

Proof. By construction, the projection X — Y is an epimorphism of fppf sheaves. This implies
that it is an fppf covering; see A??7. Further, ¥: G xg X — X Xy X is an isomorphism of fppf
sheaves, again by construction of ¥ = G\X. By the Yoneda lemma (3.3), ¥ is then also an
isomorphism of schemes. O

(4.32) In the situation of the proposition, a necessary condition for (G\X)gpps to be repre-
sentable by a scheme is that the action of G on X is strictly free. Indeed, this is immediate
from the fact that X xy X is a subscheme of X xg X. But the good news contained in (4.31)
is that if an fppf quotient exists, it has very good functorial properties. Let us explain this in
some more detail.

We say that a property P of morphisms of schemes is fppflocal on the target if the following
two conditions hold:
(a) given a cartesian diagram

X - X

f/l J{f

s — S
g

we have P(f) = P(f’) (we say: “P is stable under base change”);
(b) if furthermore ¢g: S” — S is an fppf covering then P(f) < P(f’).

Many properties that play a role in algebraic geometry are fppf local on the target. More
precisely, it follows from the results in EGA 1V, § 2 that this holds for the property P of a
morphism of schemes of being flat, smooth, unramified, étale, (locally) of finite type or finite
presentation, (quasi-) separated, (quasi-) finite, (quasi-) affine, or integral.

(4.33) Corollary. Let P be a property of morphisms of schemes which is local on the target
for the fppf topology. If ¢: X — Y is an fppf quotient of X under the free action of an S-group
scheme G, then

g X—-Y pro: G xg X — X - ™ G— S
has property P has property P has property P

where moreover the last implication is an equivalence if X — S is an fppf covering.
Proof. Clear, as ¢: X — Y is an fppf covering and G xg X — X xy X. O

In the applications we shall see that this is a most useful result. After all, it tells us that
an fppf quotient morphism ¢: X — Y inherits many properties from the structural morphism
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m: G — S. To study m we can use the techniques discussed in Chapter 3. To give but one
example, suppose S = Spec(k) is the spectrum of a field and that G and X are of finite type
over k. As before we assume that G acts freely on X. Then the conclusion is that an fppf
quotient morphism ¢: X — Y is smooth if and only if G is a smooth k-group scheme. By (3.17)
it suffices to test this at the origin of G, and if moreover char(k) = 0 then by (3.20) G is
automatically smooth over k.

(4.34) At this point, let us take a little step back and compare the various notions of a quotient
that we have encountered.

Consider a base scheme S, an S-group scheme G acting on an S-scheme X, and suppose
q: X — Y is a morphism of S-schemes. Then ¢ realizes Y as

—a categorical quotient of X by G if ¢ is universal for G-equivariant morphisms from X to
an S-scheme with trivial G-action;

—a geometric quotient of X by G if |Y| = |X|/ ~ and Oy = (¢.Ox)¢, i.e., Y represents
the quotient of X by G formed in the category of ringed spaces;

—an fppf quotient of X by G if Y represents the fppf sheaf associated to the presheaf
T — G(T)\X(T), ie., Y represents the quotient of X by G formed in the category of fppf
sheaves.

Further we have defined what it means for Y to be a universal categorical or geometric
quotient. As remarked earlier, an fppf quotient is automatically universal.

The following result is due to Raynaud [1] and gives a comparison between fppf and geo-
metric quotients.

(4.35) Theorem. Let G be an S-group scheme acting on an S-scheme X.
(i) Suppose there exists an fppf quotient Y of X by G. ThenY is also a geometric quotient.
(ii) Assume that X is locally of finite type over S, and that G is flat and locally of finite
presentation over S. Assume further that the action of G on X is strictly free. If there exists
a geometric quotient Y of X by G then Y is also an fppf quotient. In particular, the quotient
morphism q: X — Y is an fppf morphism and Y is a universal geometric quotient.

Proof. For the proof of (ii) we refer to Anantharaman [1], Appendix I. Let us prove (i). Suppose
that ¢: X — Y is an fppf quotient. Write r: X — Z := (G\X),s for the quotient of X by G
in the category of ringed spaces over S. Since r is a categorical quotient in RS,s we have a
unique morphism of ringed spaces s: Z — Y such that ¢ = sor. Our goal is to prove that s is
an isomorphism. First note that ¢, being an fppf covering, is open and surjective. Since also r
is surjective, this implies that the map s is open and surjective.

Next we show that s is injective. Suppose A and B are points of | X| that map to the same
point C in |Y|. We have to show that p~1{A} N pr;(l{B} is non-empty, for then A and B map
to the same point of Z, and the injectivity of s follows. Choose a field extension x(C') C K
and K-valued points a € X(K) and b € X(K) with support in A and B, respectively, such
that g(a) = q(b). By construction of the fppf quotient, there exists a K-algebra L of finite type
and an L-valued point d € G xg X (L) with p(d) = a and prx(d) = b. But then the image of
d: Spec(L) — G x g X is contained in p~'{A} Npry'{B}.

Finally, let U an open part of Y. There is a natural bijection between I'(U, Oy ) and the
morphisms U — A} over S. Write V := ¢~ '(U) and W := p~ (V) = pri (V). By the Yoneda
lemma the morphisms U — Al as schemes are the same as the morphisms as fppf sheaves. By
construction of the fppf quotient we therefore find that T'(U, Oy ) is in bijection with the set of
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morphisms f: V — AL over S such that fop = fopry: W — AL. Writing f := gop = gopry,
this shows that Oy is the kernel of ¢.Ox =% f.Ogxsx, which, by definition, is the subsheaf of
G-invariant sections in ¢,Ox. This proves that s is an isomorphism of ringed spaces, so that Y
is also a geometric quotient of X by G. O

To summarize, we have the following relations between the various notions:*

fppf quotient — universal N universal
prid geometric quotient categorical quotient

N\ I I

geometric quotient = categorical quotient

where the implication “geometric = fppf” is valid under the assumptions as in (ii) of the theorem.

(4.36) The sheaf-theoretic approach that we are discussing here of course also makes sense for
other Grothendieck topologies on Sch /g, such as the étale topology. Thus, for instance, suppose
q: X — Y is an fppf quotient of X by the action of an S-group scheme G. One may ask if ¢ is
also an étale quotient. But for this to be the case, ¢ has to be an epimorphism of étale sheaves,
which means that étale-locally on Y it admits a section. If this is not the case then ¢ will not
be a quotient morphism for the étale topology.

To give a simple geometric example, suppose ¢: X — Y is a finite morpism of complete
non-singular curves over a field such that the extension k(Y") C k(X) on function fields is Galois
with group G. Then ¢ is an fppf quotient of X by G, but it is an étale quotient only if there is
no ramification, i.e., if ¢ is étale.

Conversely, if étale-locally on Y the morphism ¢ has a section then ¢ is an epimorphism
of étale sheaves and one shows without difficulty that ¢ is an étale quotient of X by G. (Note
that ¢ is assumed to be an fppf quotient morphism, so we already know it is faithfully flat, and
in particular also surjective.) But as the simple example just given demonstrates, for a general
theory of quotients we obtain better results if we use a finer topology, such as the fppf topology.

(4.37) Working with sheaves of groups has the advantage that many familiar results from
ordinary group theory readily generalize. For instance, if H is a normal subgroup scheme
of G then the fppf quotient sheaf G/H is naturally a sheaf of groups, and the canonical map
¢: G — G/H is a homomorphism. Hence if G/H is representable then it is a group scheme
and the sequence 0 — H — G — G/H — 0 is exact. In this case, if f: G — G’ is a
homomorphism of S-group schemes such that f|y is trivial then f factors uniquely as f = f’eq,
where f': G/H — G’ is again a homomorphism of group schemes.

To conclude our general discussion of fppf quotients, let us now state two existence results.
For some finer results see Raynaud [1] and [2], SGA 3, Exp. V and VI, and Anantharaman [1].

(4.38) Theorem. Let G be a proper and flat group scheme of finite type over a locally
noetherian basis S. Let p: G xg X — X define a strictly free action of G on a quasi-projective
S-scheme X. Then the fppf quotient G\ X is representable by a scheme.

A proof of this result can be found in SGA 3, Exp. V, § 7.

* schuine pijl moet gestreepte pijl worden
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(4.39) Theorem. Let G be a flat group scheme of finite type over a locally noetherian base
scheme S. Let H C G be a closed subgroup scheme which is flat over S. Suppose that we are
in one of the following cases:

(a) dim(S) < 1;

(b) G is quasi-projective over S and H is proper over S;

(c) H is finite locally free over S such that every fibre Hy C Gy is contained in an affine
open subset of G.
Then the fppf quotient sheaf G/H is representable by an S-scheme. If H is normal in G then
G/H has the structure of an S-group scheme such that the natural map ¢: G — G/H is a
homomorphism.

For the proof of this result in case (a) see Anantharaman [1], § 4. In case (b) the assertion
follows from (4.38), and case (c) is an application of Thm. (4.16); cf. Example (4.29).

(4.40) Example. Let X be an abelian variety over a field k. If H C X is a closed subgroup
scheme then by Thm. (4.38) there exists an fppf quotient ¢: X — Y := X/H. By Thm. (4.35) ¢
is also a geometric quotient, and from this it readily follows that Y is again an abelian variety.

§4. Finite group schemes over a field.

Now that we have some further techniques at our disposal, let us return to the study of group
schemes. As an application of the above, we sketch the proof of a useful general result.

(4.41) Theorem. Ifk is a field then the category of commutative group schemes of finite type
over k is abelian.

Proof (sketch). Write C for the category of commutative group schemes of finite type over k.
We view C' as a full subcategory of the category ShAb,; of fppf sheaves of abelian groups on
Spec(k), which is an abelian category. Clearly C' is an additive subcategory, and by (3.13) it is
stable under the formation of kernels.

Let f: G1 — G2 be a morphism in C. In the category ShAb,; we can form the quotients
q1: G1 — Gi/Ker(f) and go: G — G3/Gy, and we have an isomorphism a: Gy /Ker(f) —
Ker(gz). First one shows that the quotient morphism ¢; exists as a homomorphism of group
schemes; see also (4.39) below. Let Gy := G /Ker(f), and let f: G; — G2 be the homomorphism
induced by f. Note that f is a monomorphism. Now one proves that the quotient sheaf G4 /Gy
is also representable by a k-scheme of finite type; for the details of this see SGA 3, Exp Vla,
Thm. 3.2. But the natural map of sheaves G2 /G1 — G2/ (1 is an isomorphism, so it follows that
G2/G1 is a group scheme. In particular, C is stable under the formation of cokernels, and since
C is a full subcategory of ShAb;, we have an isomorphism a: Gy /Ker(f) — Ker(gz) in C. O

We now focus on finite group schemes.

(4.42) Definition. Let G be a finite group scheme over a field k. We say that G is

— étale if the structural morphism G — Spec(k) is étale;

— local if G is connected.
Next suppose that G is commutative. Recall that we write GP for the Cartier dual of G. We
say that G is
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— étale-étale if G and GP are both étale;
— étale-local if G is étale and GP is local;

— local-étale if G is local and GP is étale;
— local-local if G and GP are both local.

Let us note that if £ C K is a field extension and if G is étale (resp. local) then Gk is
étale (resp. local), too. For étaleness this is clear; for the property of being local this is just
Prop. (3.17), part (i).

(4.43) Examples. If char(k) = 0 then it follows from Thm. (3.20) that every finite commutative
k-group scheme is étale-étale. If char(k) = p > 0 then all four types occur:

type: étale-étale étale-local local-étale local-local

example: (Z/mZ) with ptm (Z/p™Z) Hpn Qpn

(4.44) Lemma. Let Gy and Gy be finite group schemes over a field k, with Gy étale and Go
local. Then the only homomorphisms G; — G4 and Gy — (1 are the trivial ones.

Proof. Without loss of generality we may assume that k = k. Then G2rea C G2 is a connected
étale subgroup scheme; hence Ggreq = Spec(k). Now note that any homomorphism G; —

Gy factors through Gg,eq. Similarly, any homomorphism Gy — G factors through G? o~
Spec(k). O

Note that the assertion about homomorphisms from an étale to a local group scheme does
not generalize to arbitrary base schemes. For instance, if we take S = Spec (k:[z-:]) as a base
scheme then the group Homg((Z/pZ), ,up) is isomorphic to the additive group k, letting a € k
correspond to the homomorphism (Z/pZ)s — i, s given on points by (n mod p) — (1 + ae)™.

(4.45) Proposition. Let G be a finite group scheme over a field k. Then G is an extension
of an étale k-group scheme Gy, = wo(G) by the local group scheme G°; so we have an exact
sequence

1 -G —G— Gg — 1. (5)

If k is perfect then this sequence splits (i.e., we have a homomorphic section G < Gg;) and G is

isomorphic to a semi-direct product G° x Gg. In particular, if k is perfect and G is commutative
then G = GO X Gét-

Note that the étale quotient Gy is nothing but the group scheme wg(G) of connected
components introduced in (3.28). In the present context it is customary to think of G¢; as a
“building block” for G, and it is more customary to use a notation like Ggt.

Proof. Define G¢; := wo(G), and consider the homomorphism ¢: G — Gy as in Prop. (3.27).
As shown there, ¢ is faithfully flat, and the kernel of q is precisely the identity component G°.
Hence we have the exact sequence (5).

Let us now assume that k is perfect. Then Gi.q C G is a closed subgroup scheme
(Exercise 3.2) which by (ii) of Prop. (3.17) is étale over k. We claim that the composition
Ghreq — G —» Gy is an isomorphism. To see this we may assume that k = k. But then G, as a
scheme, is a finite disjoint union of copies of GV. If there are n components then Greq and G
are both isomorphic to the disjoint union of n copies of Spec(k), and it is clear that Gyeq — Gt
is an isomorphism of group schemes. The inverse of this isomorphism gives a splitting of (5). O
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Combining this with Lemma (4.44) we find that the category C' of finite commutative group
schemes over a perfect field £ decomposes as a product of categories:

C= Cét,ét X C'ét,loc X C'loc,ét X C’loc,loc .
As remarked above, C = Cl; ¢ if char(k) = 0.

(4.46) Lemma. Let S be a connected base scheme. If 0 — Gy — Gy — G3 — 0 is an
exact sequence of finite locally free S-group schemes then rank(Gs) = rank(G1) - rank(Gs).

Proof. Immediate from the fact that G5 is a Gi-torsor over G3 for the fppf topology, as this
implies that Og, is locally free as an Og,-module, of rank equal to rank(G1/5). O

(4.47) Proposition. Let k be a field of characteristic p > 0. Let G be a finite connected
k-group scheme. Then the rank of G is a power of p.

Proof. Let Fg/: G — G®) be the relative Frobenius homomorphism. Write G[F] := Ker(Fg/i)-
The strategy of the proof is to use the short exact sequence 1 — G[F] — G — G/G[F] — 1
and induction on the rank of G. The main point is then to show that the affine algebra of G[F]
is of the form k[X,...,X4|/(X7,...,XY) with d = dimy(T¢,.). To prove this we use certain
differential operators.

Write G = Spec(A), and let I C A be the augmentation ideal. We have an isomorphism
I/r-= Qa/k ®a k, sending the class of £ € I to d§ ® 1. Further, (3.15) tells us that Q,4/;, =
(Qa/i ®a k) @ A. In total we find

Dery,(A) = Homa (Qa/x, A) = Homy (1 /17, A),

where the derivation D,: A — A corresponding to ¢: I/I? — A satisfies D, (£) = ¢(£) mod I
for all £ € I.

Choose elements x1,...,24 € I whose classes form a k-basis for I/I%. By the previous
remarks, there exist k-derivations D;: A — A such that D;(z;) = §; ; mod I for all ¢ and j.
We claim that for all non-negative numbers my,...,mq and ny,...,ng with my + -+ +mg =

ny + -+ + ng we have

mq mq—1 mi ni ng\ —
Dy "Dy - Dy (951 Ty ):

(6)

ni!ng! - ng! mod I, if m; = n; for all ¢;
0 mod I, otherwise.

To see this, note that for every D € Dery(A) the product rule implies that D(I") C I"~!. With
this remark, (6) follows by induction on the number m; + - -- + mg.
By Nakayama’s lemma the x; generate I, so we have

AgI{J[Xl,...de]/(flw"qu)

via z; — X;. Let J = (f1,..., fy) C A. We claim that J C (X7,..., X7). To see this, suppose
we have a polynomial relation between the z; such that there are no terms z{ with a > p. Write
this relation as

0:h0+h1(-1'1,---,$d)+"'+hr(331,---,1'd),

where h; is a homogeneous polynomial of degree j. Let j be the smallest integer such that
h; # 0. Suppose x| ---x;* (with ny +--- + ng = j) is a monomial occurring with non-zero
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Nda—1

coefficient. Applying the differential operator D}*D 7" --- Di'* and using (6) we obtain the
relation nqlng!---ng! € I. This contradicts the fact that k is a field of characteristic p and that
all n; are < p. Hence J C (X7,...,X}), as claimed.

Let Fg)p: G — G®) be the relative Frobenius homomorphism. On rings it is given by

BIX0s o X P f) — k(X Xal /(oo fa)s X X

As the zero section of G?) is given by sending all X; to 0 we find that the affine algebra of
G[F] := Ker(Fg i) is

Agr) = kX1, Xl /(XD X fr o f) = RIX, . Xl /(XYL X))

In particular, G[F] has rank p?. Further, rank(G) = rank(G[F]) - rank(G/G[F]) = p* -
rank(G/G[F]) by Lemma (4.46). As G = G° we have d > 0 if G # {1}; now the proposi-
tion follows by induction on rank(G). O

(4.48) Corollary. Ifchar(k) = p then a finite commutative k-group scheme is étale-étale if and
only if p { rank(G).

Proof. In the “if” direction this is a direct consequence of the proposition combined with (4.45)
and Lemma (4.46). Conversely, suppose G is étale-étale. We may assume that k = k, in which
case G is a constant group scheme. If p | rank(G) then G has a direct factor (Z/p"Z). But then

GP has a factor p,» and is therefore not étale. O
Exercises.
(4.1) Let S be a base scheme. Fix an integer N > 2. Take G = X = G,,, s, and let g € G act

on X as multiplication by g'V.

(i) Let T be an S-scheme. Let x1 and x5 be T-valued points of X; they correspond to elements
Y1, 72 € I(T,0r)*. Let ¢ := ~1/72, and define a scheme T’, affine over T, by T’ :=
Spec (O7[t]/(tN — ¢)). Show that the images of 1 and x5 in X(1”) lie in the same orbit
under G(T7).

(ii) Show that 7" — T is an epimorphism of schemes over S. (By definition this means that for
every S-scheme Z the induced map Z(T') — Z(T") is injective.)

(iii) Suppose that ¢: X — Y is a G-invariant morphism of S-schemes. Show that for every
S-scheme T' the image of ¢(T"): X(T) — Y (T') consists of a single point. Conclude that
X — S is a universal categorical quotient of X by G.

(iv) Show that the endomorphism G,, — G,, given by g — ¢V is faithfully flat and of finite
presentation. Use this to show that the fppf sheaf G\ X is represented by the scheme S.

(4.2) Let p: G xg X — X be an action of an S-group scheme G on an S-scheme X. Define the
relation P ~ @ on |X| as in (4.11). The goal of this exercise is to show that ~ is an equivalence
relation.

(i) Let ¥ = V¥, be the graph morphism, as defined in (4.1). Write

U: |G xg X| — |X] x5 | X]

for the composition of the map |V[: |G xg X| — |X xg X| and the canonical (surjective)
map | X xg X| — [X]| x|g [ X]|. Show that P ~ Q precisely if (P,Q) € ImV.
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(ii) Write e(S) C G for the image of the identity section. Show that the projection e(S)xg X —
X is an isomorphism. Conclude that ~ is reflexive.

(iii) Let s: X xg X — X xXg X be the morphism reversing the factors. Find a morphism
f: G xg X — G xg X such that so¥ = Wo f. Conclude that ~ is symmetric.

(iv) Show that ~ is transitive. [Hint: use that the natural map

(GxsX) x (GxgX)| — |G xgX] X |G x5 X|

P, X,prx lol,| X |, Iprx|

is surjective.]

Ex:A1gExQFGS (4.3) Let k be an infinite field. Let A be a k-algebra which is a product of fields. Suppose
M is a free A-module of finite rank. Let N C M be a k-submodule such that N spans M as
a A-module. Show that N contains a A-basis for M. Show by means of an example that the
condition that k is infinite is essential.

Ex:KilledbyRk (4.4) Let m: G — S be a locally free group scheme of rank r over a reduced, irreducible base
scheme S. The goal of this exercise is to show that G is annihilated by its rank, i.e., the morphism
[r]a: G — G given on points by g — ¢" equals the zero morphism [0]g = eom: G — S — G.

(i) Suppose S is the spectrum of a field k. Reduce the problem to the case that G = GY. [Hint:
Use (4.45) and Lemma (4.46). For étale group schemes reduce the problem to Lagrange’s
theorem in group theory.]

(ii) Suppose S = Spec(k) with char(k) = p. Suppose further that G = G° = Spec(A). By
(4.47) we have rank(G) = p" for some n. If I C A is the augmentation ideal, show that
IP" = (0). Now use the result of Exercise (3.7) to derive that [p"](I) = (0). Conclude that
[p"]e = [0]c-

(iii) Prove the stated result over an arbitrary reduced and irreducible basis. [Hint: use that the
generic fibre of G is Zariski dense in G']

[Remark: for commutative finite locally free group schemes the result holds without any restric-

tion on the basis. This was proven by Deligne; see Tate-Oort [1]. It is an open problem if the

result is also valid over arbitrary base schemes for non-commutative G.]

Ex:X/Glocalaty (4.5) Let S be a locally noetherian scheme. Let G be a finite locally free S-group scheme acting
on an S-scheme X of finite type. Assume that for every closed point P € | X| the G-equivalence
class of P is contained in an affine open subset. Write ¢: X — Y for the quotient morphism. If
x € | X| then we write O x,z for the completed local ring of X at the point x; likewise for other
schemes.

(i) Let y € |Y|. Show that the scheme Fy = [Lieq1(» Spec(Ox.,) inherits a G-action, and
that Spec(Oy.,) is the quotient of F, modulo G. [Hint: First reduce to the case that S = Y;
then apply a flat base change.]

(ii) Suppose S = Spec(k) is the spectrum of a field. Let z € X (k) be a k-rational point with
image y € Y (k) under ¢q. Show that ¢ induces an isomorphism OAy7y = (O x.z)Ce.

Ex:FixedPts (4.6) Let X — S be a morphism of schemes. Let G be a finite group that acts on X over S.
(i) For g € G, define a scheme X9 and a morphism i4,: X9 — X by the fibre product square

X9 e X



(i)

where the morphism ¢4 X — X xg X is given by  — (¢ - x,z). Show that i, is an
immersion and that it is a closed immersion if X /S is separated.

Define X¢ < X as the scheme-theoretic intersection of the subschemes X9, for g € G. (In
other words, if G = {g1,...,9n} then X := X9 xx X9 xx --- xx X9.) Show that X¢
is a subscheme of X, and that it is a closed subscheme if X/S is separated. Further show
that for any S-scheme T we have X% (T) = X(T)%. The subscheme X¢ < X is called the
fized point subscheme of the given action of G.
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Chapter V. Isogenies.

In this chapter we define the notion of an isogeny, and we discuss some basic examples,
including the multiplication by an integer n # 0 and the relative Frobenius homomorphism in
characteristic p. As applications we obtain results about the group of n-torsion points on an
abelian variety. If the ground field has positive characteristic p this leads to the introduction of
an invariant, the p-rank of the abelian variety.

§1. Definition of an isogeny, and basic properties.

(5.1) Lemma. (i) Let X and Y be irreducible noetherian schemes which are both regular and
with dim(X) = dim(Y"). Let f: X — Y be a quasi-finite morphism. Then f is flat.

(ii) Let f: X — Y be a morphism of finite type between noetherian schemes, with Y reduced
and irreducible. Then there is a non-empty open subset U C 'Y such that either f~*(U) = () or
the restricted morphism f: f~Y(U) — U is flat.

A proof of (i) can be found in Altman-Kleiman [1], Chap. V, Cor. 3.6 or Matsumura [1],
Thm. 23.1. For (ii) we refer to Mumford [2], Lecture 8.

(5.2) Proposition. Let f: X — Y be a homomorphism of abelian varieties. Then the following
conditions are equivalent:

(a) f is surjective and dim(X) = dim(Y');

(b) Ker(f) is a finite group scheme and dim(X) = dim(Y");

(c) f is a finite, flat and surjective morphism.

Proof. We shall use that if h: Z; — Z5 is a flat morphism of k-varieties and F' C Z; is the fibre
of h over a closed point of Z5 then F' is equidimensional and

dim(Z;) = dim(Z3) + dim(F) . (1)

(This is a special case of HAG, Chap. III, Prop. 9.5.)

Let us first assume that (b) holds. As f is proper and all fibres are translates of Ker(f) it
follows that f is finite. Hence f(X) is closed in Y, of dimension equal to dim(X) = dim(Y).
Hence f is surjective. Further, by (i) of the lemma, f is flat. This shows that (a) and (c) hold.

Next suppose that (a) holds. By (ii) of the lemma, f is flat over a non-empty open subset
U CY. As all fibres of f are translates of Ker(f), (b) follows from (1). That (c) implies (b)
again readily follows from (1). O

By making use of the results about quotients that were discussed in the previous chapter,
we could do without Lemma (5.1). We leave such an alternative proof of the proposition to the
reader.

(5.3) Definition. A homomorphism f: X — Y of abelian varieties is called an isogeny if f
satisfies the three equivalent conditions (a), (b) and (c) in (5.2). The degree of an isogeny f is
the degree of the function field extension [k(X): k(Y)]. (Note that we have a homomorphism
k(Y) — k(X), since an isogeny is surjective.)

Isogs, 8 februari, 2012 (635)
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If f: X — Y is an isogeny then f induces an isomorphism X/Ker(f) — Y. Because all
fibres of f are translates of Ker(f) the sheaf f,Ox is a locally free Oy-module of finite rank.
Computing this rank at the generic point of Y, respectively the closed point 0 € Y, gives

deg(f) = ranko, (f.Ox) = rank(Ker(f)) .

(Here rank(Ker(f)) denotes the rank of the finite group scheme Ker(f).) If f: X — Y and
g: Y — Z are isogenies then so is go f, and deg(ge- f) = deg(g) - deg(f).

(5.4) Lemma. Let f: W — X and h: Y — Z be isogenies of abelian varieties over k. If gy,
g2: X — Y are homomorphisms such that hogiof = hogoo f then g1 = go.

Proof. We may assume that k = k. Suppose hogiof = hogyo f. Because f is faithfully flat, it
is an epimorphism of schemes, so it follows that hog; = hogs. Hence g1 — go maps X into the
finite group scheme Ker(h). As X is connected and reduced, g; — go factors through Ker(h)? ;,

which is trivial. O

(5.5) We recall the notion of a purely inseparable morphism (French: morphisme radiciel).
In EGA 1"V, Prop. 3.7.1 it is shown that the following conditions on a morphism of schemes
f: X — Y are equivalent:

(a) f is universally injective; this means that for every Y’ — Y the morphism f’: X’ — Y’
obtained from f by base change is injective;

(b) f is injective and for every x € X the residue field k(z) is a purely inseparable extension
of k(f(2));

(c) for every field K, the map X(K) — Y(K) induced by f is injective.
A morphism that satisfies these conditions is called a purely inseparable morphism.

(5.6) Proposition. Let f: X — Y be an isogeny.
(i) The following conditions are equivalent.
(a) The function field k(X) is a separable field extension of k(Y');
(b) f is an étale morphism;
(¢) Ker(f) is an étale group scheme.
(ii) The following conditions are equivalent.
(a) The function field k(X) is a purely inseparable field extension of k(Y');
(b) f is a purely inseparable morphism;
(¢) Ker(f) is a connected group scheme.

Proof. (i) That (b) and (c) are equivalent is clear from (4.33). If f is étale then for every x € X,
writing y = f(z) € Y, the residue field k(x) is a finite separable extension of k(y). If we apply
this with = the generic point of X, we see that (b) implies (a).

Now assume that k(X) is a finite separable extension of k(Y). As f is a finite flat morphism,
it is étale at a point « € X if and only if (Qﬁc/y)z = 0. But Q%{/Y is a coherent Ox-module,
hence its support is closed, and it follows that the locus where f is étale is an open subset
U C X. The assumption that k(X) is finite separable over k(Y) means that the generic point
of X isin U, so U is non-empty. As f is proper it follows that there is an open subset V C Y
such that f~1(V) is étale over V. But V is the quotient of f~1(V) under Ker(f), so it follows
from (4.33) that Ker(f) is étale.
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(i) We can factor f as a composition of two isogenies: X — X/Ker(f)? — Y. The kernel
of the second isogeny is Ker(f)/Ker(f)?, which is étale. (See also Prop. (4.45).) Using (i) it
follows that (a) implies (c).

That (b) implies (a) is immediate from property (b) in (5.5), applied to the generic point
of X.

Finally suppose that N := Ker(f) is a connected group scheme. Let & C K be a field
extension. Let A be the affine algebra of N and write Ax = A ®) K. If y: Spec(K) — Y is
a K-valued point then the scheme-theoretic fibre f~!(y) := X Xy, Spec(K) is isomorphic to
Nk = Spec(Ak). As Ak has finite K-dimension it is an artinian ring. Any artinian ring is
a product of artinian local rings; this corresponds to the decomposition of f~!(y) as a union
of connected components. But we know from (i) of (3.17) that Nk is a connected scheme.
Hence Ay is artinian local and |f~!(y)| consists of a single point. This shows that f satisfies
condition (c) of (5.5) and is therefore purely inseparable. O

(5.7) Definition. An isogeny f: X — Y is called separable if it satisfies the three equivalent
conditions in (5.6)(i). It is called a (purely) inseparable isogeny if it satisfies the equivalent
conditions of (5.6)(ii).

(5.8) Corollary. Every isogeny f: X — Y can be factorized as f = hog, where g: X — Z is
an inseparable isogeny and h: Z — Y is a separable isogeny. This factorization is unique up to
isomorphism, in the sense that if f = h'og’: X — Z' — Y is a second such factorization then
there is an isomorphism o: Z — Z' with ¢ = aog and h = I/« cv.

Proof. Immediate from the above and Prop. (4.45). O

An important example of an isogeny is the multiplication [n]x: X — X by an integer n # 0.
We write X|[n| := Ker([n]x) C X.

(5.9) Proposition. For n # 0, the morphism [n]x is an isogeny. If g = dim(X), we have
deg([n]x) = n?9. If (char(k),n) = 1 then [n]x is separable.

Proof. Choose an ample and symmetric line bundle L on X. (Recall that L is said to be
symmetric if (—1)*L 2 L, and note that if L is ample then L® (—1)*L is ample and symmetric.)
By (2.12) we know that n% L = L®"” . The restiction of n’ L to Ker(f) is a trivial bundle which
is ample. (Here we use that n # 0.) This implies that Ker(f) is finite, hence [n]x is an isogeny.

To compute the degree we use intersection theory on smooth varieties. Choose an ample
symmetric divisor D. Then deg([n|x) - (D)?¢ = ([n]%D)?. But [n|% D is linearly equivalent to
n?- D, so ([n]% D)9 =n? - (D)9, and we find that deg([n]x) = n?9.

If char(k) = 0 then the last assertion is trivial. If char(k) = p > 0 with p { n then also
p1n?9 = rank(X|[n]), and the result follows from Cor. (4.48). Alternatively, as p does not divide
n? = [k(X1): k(X2)], the field extension k(X5,) C k(X1) given by f is separable. O

(5.10) Corollary. If X is an abelian variety over an algebraically closed field k then X (k) is a
divisible group. That is, for every P € X (k) and n € Z\{0} there exists a point Q) € X (k) with
n-Q =P.

Note that if the ground field & is only assumed to be separably closed then it is not true in
general that X (k) is a divisible group. See 7?7 for an example.
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(5.11) Corollary. If (char(k),n) =1 then X[n](ks) = X[n](k) = (Z/nZ)?9.

Proof. We know that X|[n] is an étale group scheme of rank n29. Hence X|[n](ks) = X[n](k) is
an abelian group of order n29, killed by n. Further, for every divisor d of n the subgroup of
elements killed by d is just X[d](ks) and has order d?9. It now readily follows from the structure
theorem for finite abelian groups that we must have X[n](ky) = (Z/nZ)%9. O

(5.12) Proposition. If f: X — Y is an isogeny of degree d then there exists an isogeny
g:Y — X with go f = [d]x and fog = [d]y.

Proof. If deg(f) = d then Ker(f) is a finite group scheme of rank d and is therefore annihilated
by multiplication by d; see Exercise (4.4). It follows that [d]x factors as

for some isogeny g: Y — X. Then ge[dly = [d]x°g9 = (g9°f)°g = go(f-g), and by Lemma (5.4)
it follows that fog = [d]y. O

(5.13) Corollary. The relation

def . .
X ~,Y = there exists an isogeny f: X - Y

is an equivalence relation on the set of abelian varieties over k.

If there is no risk of confusion we shall use the notation X ~ Y instead of X ~ Y. Note,
however, that the ground field plays a role: if k C K is a field extension then X ~j Y implies
that Xx ~g Yk, but the converse does not hold in general.

If there exists an isogeny f: X — Y then we say that X and Y are isogenous. Again this
notion is relative to a given ground field; if necessary we may specify that X and Y are isogenous
over the given field k.

(5.14) Example. Suppose we work over the field C of complex numbers. If X is an abelian
variety over C, the associated analytic manifold X?" is a complex torus; see also (1.11). So
we can write X* = V/L, where V is a complex vector space and L C V is a lattice. More
intrinsically, V' can be identified with the tangent space of X®" at the origin, and the projection
map V — X is then the exponential map in the sense of Lie theory. We shall come back to this
in more detail in Chapter 77.

Let X; and X5 be complex abelian varieties; write X?* = V;/L;. Let f: X; — X,
be a homomorphism. It follows from the previous remarks that the associated analytic map
fare Xan — X3 i given by a C-linear map ¢: V3 — V5 such that ¢(Ly) C Lo. Conversely, any
such ¢ gives an analytic map @: X&" — X3" and it can be shown (using a result of Chow, see
HAG, Appendix B, Thm. 2.2) that there exists a unique algebraic homomorphism f: X; — X,
with ¢ = fa".

As an example, multiplication by n on X corresponds to ¢ = n-idy, which obviously maps L
into itself. We find that the group of n-torsion points X [n](C) is isomorphic to n='L/L C V/L,
and if g = dim(X) then indeed n='L/L = (Z/nZ)%9.
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As an application we find that X; ~ X5 if and only if there exists a C-linear isomorphism
a: Vi =5 V, such that a(L; ® Q) = Ly ® Q; in other words, there should exist positive integers
m and n with m - Ly C (L) Cn~t- Lo.

§2. Frobenius and Verschiebung.
As the next example of an isogeny, we look at Frobenius in characteristic p > 0.

(5.15) Proposition. Let X be a g-dimensional abelian variety over a field k with char(k) =
p > 0. Then the relative Frobenius homomorphism Fy,: X — X @) js a purely inseparable
isogeny of degree p9.

Proof. Write X[F] := Ker(Fx/;). On underlying topological spaces, the absolute Frobenius
Frobx: X — X is the identity. It follows that the topological space underlying X[F] is the
singleton {e}. Let now U = Spec(A), with A = k[z1,...,2.]/(f1,..., fn), be an affine open

neighourhood of e in X such that e corresponds to the maximal ideal m = (zq,...,2,) C A.
Write fi(p ) ¢ klx1,...,x.] for the polynomial obtained from f; by raising all coefficients to the pth
power. Then U®) = Spec(A®), with AP) = k[xy,...,2,]/( l(p), e T(f))), and Fy/p: U — U,

the restriction of F'x/;, to U, is given on rings by

A:k[xlw'wa]/(flw'wfn) <_A(p) :k[ajlv"'?xT]/(fl(p)w”7f'r(zp))

p

It follows that X[F] = Spec(B), with B = k[z1,...,2z,]/(2}, ..., 22, f1,..., fa). In particular,
X[F] is finite, hence Fx/j, is an isogeny.

Write A for the m-adic completion of A. Without loss of generality we may assume that
T1,...,74 form a basis of m/m? = T )Vge. The structure theory for complete regular local rings
tells us that there is an isomorphism

Eti, ... t,] = A

sending t; to x;. (See Bourbaki [2], Chap. VIIL, § 5, n°® 2.) Since (z7,...,2P) C m, we find that

B=A/(}, ... ,aP)A= A/}, aD)A
= Af(af, ... ah)A
= kfty, ... tg]/ (&}, ... th)
= kfty, ..., t]/(t], ..., th).

In particular this shows that deg(Fx/;) = rank(X[F]) = p? and that X[F] is a connected group
scheme. O

Our next goal is to define the Verschiebung isogeny for abelian varieties in characteristic p.
In fact, under a suitable flatness assumption the Verschiebung can be defined for arbitrary
commutative group schemes over a basis S with char(S) = p; we shall give the construction in
this generality. First we need some preparations.
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VerschPrep (5.16) Let R be a ring with char(R) = p > 0. Let A be an R-algebra. Write TP(A) = sym
A®p ®Rr--- @r A for the p-fold tensor product of A over R. The symmetric group &, on p Sym
letters naturally acts on T?(A) by ring automorphisms. Write SP(A) C T?(A) for the subalgebra sym
of &p-invariants, i.e., the subalgebra of symmetric tensors. sym

Let N: TP(A) — SP(A) be the “symmetrizer” map, i.e., the map given by

N ®--®ap) = Z Ao (1) & @ Ao (p) -
€6,

If s € SP(A) is a symmetric tensor and ¢ € TP(A) then N(st) = sN(t). It follows that J :=
N(T?(A)) is an ideal of SP(A).

Write U := Spec(A) — T := Spec(R). Applying Thm. (4.8) we find that the quotient S?(U)
of UV :=U xp U X --+ xp U (p factors) under the natural action of &, exists and is given by
SP(U) = Spec (5P(A)). The scheme S?(U) is called the p-th symmetric power of U over T'. Note
that SP(U/T) would be a better notation, as the base scheme is important in the construction.
We trust, however, that the simpler notation SP(U) will not cause any confusion. Let UP/T] —
SP(U) be the closed subscheme defined by the ideal J. If n: TP(A) — A is the multiplication
map, given by a1 ® --- ® a, + ai ---ap, then n(N(a1 ® - ®ap)) =p!-(a1---ap) = 0. This
means that the morphism

Abr

U—— Uy — SP(U)

factors through UP/T1 c SP(U). Write FY, iU — UP/T] for the morphism thus obtained.

Write AP/F) .= A ® r,r R, where F' = Frobr: R — R is the Frobenius homomorphism,
given by 7 — rP. We view A®P/F) as an R-algebra via r — 1 ®r; so for a € A and r € R we
have the relations 77 - (e ® 1) = a ® r? = (ra) ® 1. By definition, U®/T) = Spec (A?/#)). Now
observe that we have a well-defined map

pasm AV s $P(A)/7

sending a ® r € AP/ to (ra®a® --- ® a) mod J. Note that (ra ® a® --- ® a) is an element
of SP(A) because all tensors are taken over the ring R. Also note that ¢4, is well-defined
precisely because we use p-tensors. (Check this yourself!) Write /7 U /T] — g @/T) for the
morphism of schemes induced by ¢ 4 /g. It is clear from the definitions that Fi;/r = ¢y /7o F; /T

We now globalize these constructions. For this, consider a base scheme .S of characteristic p
and an S-scheme m: X — S. Define SP(X), the pth symmetric power of X over S, to be the
quotient of X% under the natural action of &,,. If U C X and T' C S are affine open subsets with
7(U) C T then SP(U) is an affine open subset of SP(X). The closed subschemes UP/T] < SP(U)
glue to a locally closed subscheme X[P/S] < §P(X). Also, the morphisms F, /T and py /7 glue
and give a factorization of the relative Frobenius morphism Fx, g as

By construction, the composition of F ¢ and the inclusion XP/5) < SP(X) is the same as the

p .

composition of the diagonal A%, /5" X — X% and the natural projection X% — S?(X). Summing
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up, we have a commutative diagram

A}(/S p
X — Xg

s

xW/s] — SP(X)

l@X/S

X (®/S)

Fx/s

VerschLen (5.17) Lemma. (i) The construction of X /5] as well as the formation of F)lc/s and px/g, is

Isogs: [p]

functorial in X and compatible with flat base change T — S.
(ii) If X is flat over S then px/g: XP/SI — x®/9) js an isomorphism of S-schemes.

Proof. Part (i) of the lemma is a straightforward verification. For (ii), it suffices to treat the
case that X = U = Spec(A) and S =T = Spec(R). Let M be an R-module. Just as before we
can form the p-fold tensor product TP(M) of M over R and the submodule SP(M) C T?(M) of
symmetric tensors, and there is a symmetrizer map N: T?(M) — SP(M). We have a well-defined
map

OM/R: MER SP(M)/N(TP(M)) givenby m®@r—[rme@m®- - @mj].

Suppose M is a free R-module with a basis {e;}ic;. The tensors ¢; := ¢e;, ® e;, ® -+ ® ¢;, with
i = (i1,...,ip) € IP, form a basis of TP(M). Such a tensor e; can be symmetrized in a minimal
way. Namely, if H C &, is the stabilizer of (i1,...,%,) in the natural action of &, on I” then
for ¢ € H\G,, the element €izy ® Cigny ® - D€y, is well-defined; now set

8¢ = E: Cioy B Cigzy © " © Cigyy -
GEH\G,

The symmetric tensors s; obtained in this way span SP(M); note however that different se-
quences 7 may give the same tensor s;. If i1 =iy = --- = i), then N(e;) = p!-s; = 0; if not all
i; are equal then N(e;) is a unit times s;. (Recall that R is an F)-algebra.) We conclude that
the tensors e; ® ¢; ® - -+ ® ¢; form a basis of SP(M)/N (TP(M)), and it follows that pp g is an
isomorphism if M is free over R.

Now we use a non-trivial result from commutative algebra. Namely, if M is flat over R
then it can be written as a filtered direct limit, say M = lim M, of free R-modules. For a proof
see [77]. Since lim is right exact and commutes with tensor products, ¢y /g can be identified
with lim ¢z /g and is therefore again an isomorphism. Applying this to M = A the lemma
follows. O

We now consider a commutative S-group scheme G. The morphism m®): G% — G given
on sections by (g1, ga;---,gp) — G192 - - - gp factors through SP(G), say via m): SP(G) — G. It
follows that [p]: G — G, which is equal to m(®) o AY, /57 factors as

Fév'/S m(?)

] = (G —= G5 — 57(G) =— G). (2)
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(5.18) Definition. If G is a commutative flat group scheme over a basis S of characteristic p
then we define the Verschiebung homomorphism

Vg/si G(p/S) — G

to be the composition

o ()

Vays = (G(p/S) Fers | aln/s) SP(G) 2= G).

That Vs is indeed a homomorphism of group schemes follows from (i) of the lemma.

(5.19) Proposition. Let S be a scheme with char(S) = p > 0. Let G be a flat S-group scheme.
(i) We have VG/SOFG/S = [p]GZ G — G.
(ii) If G is finite locally free over S then the Verschiebung is Cartier dual to the Frobenius
)P )P

homomorphism; more precisely, we have (Vg/s)” = Fgn g and Vg/s = (Fgp /g

Proof. Statement (i) follows from the definitions; indeed, if we write j: GIP/S] — SP(G) for the
inclusion morphism then

(p)°j°Fé/s = [ple

VayseFays = (m® °j°80(_;}5)°(900/s°Fé/s) =m
by (2).

For (ii), suppose G is finite locally free over S. Without loss of generality we may assume
that S = Spec(R) is affine, so that G is given by an R-algebra A. Possibly after further
localization on S we may assume that A is free as a module over R, say with basis {ej,...,e,}.
Recall from the proof of Lemma (5.17) that given a sequence i = (i1,42,...,1,) € {1,2,...,n}?,
we can symmetrize the tensor e;; ® €;, ® --- ® ¢;, in a minimal way. The resulting collection of
tensors

{8} 1<ir<in<<ipgn

is a basis of SP(A). It follows from the proof of Lemma (5.17) that the Verschiebung Vi /g is
given on rings by the composition

m(?)

A SP(A) — AP/

where m(P) is the homomorphism that corresponds to the morphism m(): SP(G) — G, and
where the homomorphism S?(A) — A®/F) is given by

S;

0, if 1; < i;41 for some j;
e; @1 ifi=(ii,...,q). ‘

Now we apply the functor ( )P = Homp(—, R). We have an isomorphism
(AD)(P/R) i (A(p/R))D
by sending » @ p € AP ®p r R to the map a ® r — rpp(a)P. Further there is a canonical
isomorphism (SP(A))P = Sym?(AP); here we note that by our general conventions in (?7?),

Sym?(AP) is a quotient of the p-fold tensor product TP(AP), whereas SP(A) is a sub-algebra
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of TP(A). Using these identifications, and writing {e1,...,&,} for the R-basis of AP dual to
{e1,...,en}, the dual of the map SP(A) — A®/1) is the map

(AD)(P/R) N Symp(AD) given by e, Q@p[pe; ®e; @+ Regl.

Furthermore, by definition of the ring structure on AP, the dual of the map m®: A — SP(A)
is the multiplication map Sym”(AP) — AP given by [p1 ® --- ® ¢,] — @1+ ¢,. Combining
this we see that the Cartier dual of Vi, is given on rings by the map

(AD)(p/R)—>A sending o®7r to r-¢P.

This shows that (Vg/S)D = Fgpg. By Cartier duality then also Vg5 = (FGo/S)D. O

Now we apply this to abelian varieties.

(5.20) Proposition. Let X be an abelian variety over a field k with char(k) = p. Then the
Verschiebung homomorphism Vi /. X () — X is an isogeny of degree p9. We have Ve Fx i =
[plx and Fix i Vx/ = [plxw-

Proof. Write F' = Fx/;, and V' = Vx/;,. We have already seen that Vo F' = [p]x. It follows that
V satisfies (a) of Proposition (5.2); hence it is an isogeny. That V has degree p9 follows from
the relation p?¢ = deg([p]) = deg(V') - deg(F) = deg(V) - p9. Finally, FoVoF = Fo[p] = [p]- F,
and because F' is an epimorphism this implies that FoV = [p]. O

(5.21) Let X be a k-scheme, where k is a field of characteristic p. For m > 1 we write X(®™)
for the base change of X over the mth power Frobenius homomorphism Frob;': & — k. By a
slight abuse of notation we write

2 m
)7?/1@ = Fx<pm—1>/k° o Fxey e Fxps X — X0 — x) . x ™)

for the “mth power” of Frobenius, or “iterated Frobenius”. Similarly, we can define an “mth
iterated Verschiebung” V)’?/k: X@®") & X by

Vi = VeV g o Viem=1) i -

By an easy induction on m we find that [p™]x = Ve Fy), and [P xm) = F oV
Indeed, for m = 1 this is just Proposition (5.20), and to make the induction we note that

m—+1 m—+1 __ m m
VX/k OFX/k = Vx/ke X /k° X<p)/k°FX/k

= Vx/ee[p™ | xw o Fx /i

= [pm]X°VX/k°FX/k = [pmH]

X -

(Likewise for the relation [p™]xm) = g oV;{;k.)

Let us now look what is the analogue of (5.11) in case char(k) | n. In fact, since all X[n](k)
are finite abelian, it suffices to consider the case that n = p", where p = char(k) > 0.

(5.22) Proposition. Suppose char(k) = p > 0. There is an integer f = f(X), with
0 < f < g = dim(X), such that X[p™]|(k) = (Z/p™Z)f for all m > 0. IfY is isogenous to X
then f(Y) = f(X).
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Proof. We can factor p™: X — X as
m Fﬁﬁk (™) hq ho
Plx=(X — XV ') =Y =X,

where hyo F’ )’?/k is purely inseparable and hy is a separable isogeny. Looking at the degrees we
find that X [p™](k) is an abelian group of rank deg(hy) = p“™), where d(m) is an integer with
0 < d(m) < gm. Write f = d(1), so that X[p|(k) = (Z/pZ)?. It follows from Corollary (5.10)
that we have exact sequences of (abstract) groups

m—1

0 — X[p" (k) — X[p™](k) L— X[p](k) — 0.

The claim that X[p™](k) = (Z/p™Z)' for all m > 0 follows by induction on m.

Finally, suppose h: X — Y is an isogeny, say of degree d. Then X [p™](k) maps to Y [p™](k),
and the kernel has order at most d. Taking m large enough, it follows that f(Y) > f(X). As
X ~Y is a symmetric relation, we conclude that f(X) = f(Y). O

(5.23) Definition. The integer f = f(X), which lies in the range 0 < f < g := dim(X), is
called the p-rank of X.

(5.24) Caution. Let X be an abelian variety of p-rank f > 0 over a non-perfect field k, and
let k C ks C k be respectively a separable closure and an algebraic closure of k. Then we have
natural injective maps X [p™](ks) — X[p™](k), but these are not, in general, isomorphisms. In
other words, in order to see all p™f distinct physical points of order p™, in general we need an
inseparable extension of the ground field.

At first sight this may seem to contradict the fact that an étale k-group scheme becomes
constant over ks. For instance, taking m = 1 we have a short exact sequence of k-group schemes

11— )(Dﬂloc — )(Uﬂ — )(hﬂét — 1,

(see Prop. (4.45)) and X|[pls; @i ks is isomorphic to (Z/pZ)f. However, in order to split the
exact sequence, and hence to be able to lift the points of X [p]st to points of X |[p], we in general
need to pass to an inseparable extension. See also the examples in (5.26) and (5.27) below for
a concrete illustration of this point.

(5.25) Remarks. (i) The p-rank does not depend on the ground field. More precisely, if &k C K
is a field extension and X is an abelian variety over k then f(X) = f(Xg). To see this we may
assume that k& and K are both algebraically closed. By (4.45) the group scheme X [p] is a product
of its local and étale parts, i.e., X[p] = X[plioc X X[ples. Over k = k the étale part becomes
a constant group scheme, i.e., X[ples = I, with I' = X|[p](k). But after extension of scalars
to K the local and étale parts of X|[p] remain local and étale, respectively; see 77. Therefore
X[p|(K)=T§(K) =T, soindeed f(X)= f(Xk).

(ii) Later we shall prove that the p-rank may take any value between 0 and dim(X): given
a field k with char(k) = p > 0 and integers 0 < f < g, there exists an abelian variety X over k
with dim(X) = g and f(X) = f. In fact, as clearly f(X; x X2) = f(X1) + f(X2), it suffices to
show that there exist elliptic curves Xy and X; over k with f(X;) = i.

(iii) An elliptic curve X is said to be ordinary if f(X) = 1 and supersingular if f(X) = 0.
In the examples below we shall use this terminology. In Chapter 7?7, we shall define the notions
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Isogs:Flex2

“ordinary” and “supersingular” for abelian varieties of arbitrary dimension. It should be noted
that for dim(X) > 2, “supersingular” is not equivalent to “p-rank = 0”.

(5.26) Example. Let X be an elliptic curve over a field k with char(k) = 2. Then X can be
given by a Weierstrass equation

y? + ar1zy + azy = ° + asx® + asx + ag (3)

such that the origin is the “point at infinity” co = (0 : 1 : 0). A point P € X (k) with affine
coordinates (§,7) is a 2-torsion point precisely if the tangent line at P passes through co. An
easy calculation shows that this happens if and only if a1£ + ag = 0. We cannot have a; = as,
because X then would be singular. We conclude:

0 H’al 210;
f(X):{1 if a3 # 0.

It should be noted that if a; = 0 and k = k then there is a linear change of coordinates
such that the equation for X becomes y? +y = z°
supersingular elliptic curve in characteristic 2 (over k = k).

. So, up to isomorphism this is the only

In the ordinary case, a; # 0, we find that the non-trivial point of order 2 in X (k) is the
point with affine coordinates (az/ay,n), where n € k satisfies

n? = (as/a1)® + as(as/a1)® + as(as/a1) + ag .

In particular, we see illustrated here the point made in (5.24) that in general we need to pass
to an inseparable extension of the ground field in order to have all p-torsion points rational.

(5.27) Example. Let X be an elliptic curve given by a Weierstrass equation (3), this time over
a field k& with char(k) = 3. Then P € X(k) \ {0} is a 3-torsion point if and only if P is a flex
point, i.e., a point at which the tangent line T'x p intersects X with multiplicity 3. (As X is
a nonsingular cubic curve the intersection multiplicity cannot be bigger.) Again this allows to
compute the p-rank by hand. To simplify, let us assume that a; = ag = 0; this is achieved after
a linear change of variables. Then P = (§,n) € X (k) is a flex point if and only if

dagn? = 4a3€? + dagasé +aj . (4)
Combined with the equation for X this is equivalent to
4a8® + (4azag —a?) = 0. (5)
As X is nonsingular we cannot have as = a4 = 0. Hence
X is ordinary <% X[3)(R) X Z/3Z <= ay #0.

Note that if az # 0 then (5) has a unique solution for ¢ € k, and if £7 are the corresponding

solutions of (5.27.1) then (§,4n) are the only two non-trivial 3-torsion points in X (k). So

indeed X[3|(k) = Z/3Z and f = 1. Further note that solving (4) in general requires passing to
an inseparable extension of k.
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(5.28) Example. Let k be a field of characteristic 2. Consider the elliptic curve X C P% given
by the homogeneous equation x2x9 + z123 = 23, with co = (0 : 1: 0) as origin. As we have seen
above, X is supersingular, which for an elliptic curve is the same as saying that X has p-rank
Zero.

Recall that the group scheme ao = agy is given by as = Spec (k[e]/(¢?)), with co-
multiplication € — e ® 1 + 1 ® €. We are going to give an action p: ag x X — X of ay
on X. For this, write X as the union of two affine open subsets: X = U; U Us, with

Ur =X \{(0:1:0)} = Spec (k[z,y]/(z* — y* — y))
and
U =X\ {(0:0:1)} = Spec (k[z, 2]/ (z* — 2% — 2)) .

Now we can give the action p on rings: let p;: as x Uy — U; be given by the homomorphism
klo,yl/(@® —y? —y) — klz,y,el /(e —y? —y,®)  with z—a+e, yoyter®,
and, similarly, let ps: ag x Uy — U, be given on rings by x +— x + ¢ and z — 2z + ex?. It is not
hard to verify that these homomorphisms are well-defined, that p; and ps agree on U; NUs, and
that the resulting morphism p is indeed a group scheme action. Note that the points (0: 1 :0)
and (0:0: 1) are as-stable when viewed as points in the underlying topological space | X|, but

that they are not fixed points of the action. In fact, the action is strictly free.
On U; the functions ¢ := 22 and 1 := y? are ag-invariant. They generate a subring of
O(Uy) of index 2; as the functions x and y themselves are clearly not invariant we conclude that

O(U)* 2 k[g,n)/ (& —1* —n) — O(U1) = klz,9)/(a® —y* —y).
Similarly, the algebra of as-invariants in O(Us) is generated by x? and z2. We find that the
quotient as\X is isomorphic to X itself, where the quotient map X — X is just the Frobenius
endomorpism, given on points by (z,y) — (22,9?).

It can be shown that there is an isomorphism X[F] 2 oo such that the action p described
above becomes precisely the action of X[F]| on X by translations. As Exercise (7?7) shows,
this does not immediately follow from the fact that the quotient map for the as-action is the
Frobenius morphism. Note that from the given definition of the action p it is not clear that this
is an action of a subgroup scheme by translations. We shall return to this later; see (77).

(5.29) Example. Let X be an elliptic curve over a field k£ with char(k) = p, such that X[F] =
ap k. It is not hard to verify that k = Endy(cyp ), where the map sends A € k to the
endomorphism of a,, = Spec (k[t]/(t?)) given on rings by ¢t — X -t. For (A, pu) € A?(k) we
obtain an embedding ¢ .y @pk < X x X by taking the composition

Qp k Map,k Xapr 2 X[F]x X[F]C X xX.

The image of ¢y ) only depends on (X : ) € P!(k).

(A p)

C\Zp X Oép
Figure 77.
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We get a family of abelian surfaces over P! by considering Y.,y := (X x X)/@(x ) (). It can
be shown that given (Ag : o) € P*(k), there are only finitely many (X : ) with (3., = Y(x,.0)-
The conclusion is that we have a non-trivial “continuous” family of isogenies X x X — Y(y.,,.
As we shall see later, such examples only exist in characteristic p > 0.

§3. Density of torsion points.

(5.30) Theorem. Let X be an abelian variety over a field k and let p be a prime number.
Then the collection of subschemes X [p™] for m > 0 is scheme-theoretically dense in X.

Let i,,: X[p™] < X be the inclusion homomorphism. By definition, saying that the col-
lection of subschemes X [p™] C X is scheme-theoretically dense in X means that there does not
exist a proper closed subscheme Y C X such that all 4,, factor through Y. If p # char(k) we can
express the density of the torsion points of p-power order in a more elementary way. Namely, in
that case the following statements hold, as we shall see in the proof.

(1) Topological density: the union of the subspaces | X[p™]| C |X| is dense in | X]|;
(2) Function-theoretic density: the homomorphism of sheaves Ox — [[,,5o Ox[pm that is
induced by the homomorphisms i,, is injective.

Because X is reduced, properties (1) and (2) are equivalent, and (1) immediately implies that
the collection of subschemes X [p”] is scheme-theoretically dense in X.

By contrast, if p = char(k) then (1) and (2) do not hold, in general. Indeed, if the p-
rank of X is zero then the group schemes X|[p™] are local, which means that the underlying
topological space is reduced to the single point 0. So in this case we can only interprete the
density statement scheme-theoretically.

Proof. We give separate proofs for the cases p = char(k) and p # char(k).

First assume that p # char(k). It suffices to prove the assertion for k = k, which from now
on we assume. In this case we know that X[p™] is étale and consists of p?9™ distinct closed
points. Let T C X (k) be the union of all X[p™|(k), and let Y C X be the smallest closed
subscheme such that all i,, factor through Y. Note that Y is reduced; it is in fact just the
reduced closed subscheme of X whose underlying space is the Zariski closure of T'. We shall first
prove that Y is a subgroup scheme of X.

If z € T then the translation t,: X — X maps T into itself; hence t,(Y) C Y. This holds
for all z € T, so it follows that for all y € Y (k) also the translation ¢, maps T into itself, and
hence t,(Y) C Y. Because Y and Y xj Y are reduced, this implies that under the group law
m: X x X — X we have m(Y xY) C Y. As further it is clear that also Y is mapped into itself
under the inverse ¢: X — X, we conclude that Y is indeed a subgroup scheme of X.

The identity component Y is an abelian subvariety of X. Let N be the number of con-
nected components of Y. Further, let ¢ = dim(X) and h = dim(Y?). By Prop. (5.9) we have
#YO[p™](k) = p*™ for all m > 0, and it follows that #Y [p"](k) < N -p?>™h. (f W C Y is a
connected component that contains a torsion point w with p” -w = 0 then translation by w gives
an isomorphism Y°[p™] = W N X[p™].) But by construction, Y contains all torsion points
of X of p-power order; so #Y [p™](k) = p?>™9. Taking m very large we see that we must have
h = g, which gives that Y° = X.

Next we deal with the case p = char(k). Let F™ = F¢), - X — X®™) be the mth power
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of the Frobenius homomorphism, and let X[F"™] C X be the kernel. Because [p™] = V"o F'™
(with V'™ = V¢, the iterated Verschiebung; see (5.21)) we have X[F™] C X[p™]. So we are
done if we can prove that the collection of group schemes X[F™] is scheme-theoretically dense
in X. As in the proof of Prop. (5.15), let U = Spec(A) with A = k[x1,...,z.|/(f1,..., fn) be an
affine open neigbourhood of the origin e in X such that e corresponds to the maximal ideal m =
(z1,...,2.) C A. Write fz-(pm) € k[z1,...,x,] for the polynomial obtained from f; by raising all
coefficients to the power p™, and write A®™) = k[zy,..., z,]/( l(pm), . ,f,spm)). The restriction

of F™ to U is given on rings by the homomorphism A®™) — A that sends x; to a:lj It follows

that X[F™] is the closed subscheme of U defined by the ideal (a:’fm, e @ 1 ) C A
Suppose Y C X is a closed subscheme such that all inclusion homomorphisms X [F™] — X
factor through Y. Let J C A be the ideal of Y NU. As in the proof of Prop. (5.15), let A
be the m-adic completion of A and choose the coordinates x; in such a way that z,...,z,
(with g = dim(X)) form a basis of m/m?. We then have an isomorphism k[t,,...,t,] — A
via t; — x;, and we shall identify A with k[ty,. .. ,tg] via this isomorphism. The assumption
that X[F™] is a subscheme of ¥ means that JA is contained in the ideal (t’fm, e ,tgm). The
intersection of the ideals (t’fm, . ,tgm) C A for all m > 0 is the zero ideal, so we conclude
that JA = (0). But then the complete local ring Oy, = A/JA of Y at the origin has Krull
dimension g, and consequently ¥ = X. O

We now prove the fact stated in Remark (2.14) that the results in (2.13) are true over an
arbitrary, not necessarily perfect, ground field.

(5.31) Proposition. Let X be an abelian variety over a field k. If Y — X is a closed subgroup
scheme then the connected component Y° C Y that contains the origin is an open and closed
subgroup scheme of Y that is geometrically irreducible. The reduced underlying scheme Y2, —
X is an abelian subvariety of X.

Proof. The assertion that Y is open and closed in Y and is geometrically irreducible, was proven
in Prop. (3.17). To prove that Y, is an abelian subvariety of X we may assume, to simplify
notation, that ¥ = Y. We are going to prove that Y,.q is geometrically reduced. Before we
give the argument, let us explain how the desired conclusion follows. If Y..q is geometrically
reduced then we have, with k& C k an algebraic closure, that Y., aF = (Y%)red is a closed subgroup
scheme of Y7; see Exercise (3.2). But then also Y;eq is a closed subgroup scheme of Y. Indeed,
the assertion that Yieq is a subgroup scheme just means that the morphism Yiq X Yieq — Y
given on points by (y1,y2) — y1 — y2 factors through Yieq C Y. If this holds after extension of
scalars to k then it also holds over k. So the conclusion is that Y;.q is a subgroup scheme of X
that is geometrically integral; hence it is an abelian subvariety.

We now prove that Yieq is geometrically reduced. If char(k) = 0 then Y = Yieq by
Thm. (3.20) and we are done by Prop. (3.17). Assume then that char(k) = p > 0. For all positive
integers n with p { n the subgroup scheme Y'[n] C Y is étale; hence we have Y'[n| C Yiea C Y.
This gives us a homomorphism of sheaves h,: Oy, ., — Oy[n] on |Yieq| = |Y|, and we define

h: Oy, , — H Oy [n]
pin
by h(f) = II, hn(f). Further we know that (Y3)rea C Xy is an abelian subvariety. By
Thm. (5.30) the collection of Y'[n]s, for n > 1 with p { n, is topologically dense in [Y| = [(Y%)red|-
This implies that also the collection of all Y [n] is topologically dense in |Y| = |Y;ed|, and because
Yieq is reduced, the homomorphism / is injective.
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Suppose that Yi.q is not geometrically reduced. Then there is a finite, purely inseparable
field extension k& C K such that (Yied)x is not reduced. (See EGA IV, Prop. 4.6.1.) As
k C K is purely inseparable, we have |(Yied)x| = |Yied| and |Y[n|x| = |Y[n]| for all n. The
structure sheaves of (Yieq)x and Y[n]x are just Oy,,, ®x K and Oy, ® K, respectively, and
the homomorphism

h®id: Oy,,, & K — ([ Ovi) @k K
pin

can be identified with the map

hi: O(Yred)K - H OY[n]K
pin

induced by the inclusions Y [n]x — (Yied)x. By our assumptions, (Yieqd)x is not reduced,
whereas all Y[n]x are reduced schemes. Hence h ® id = hx must have a non-trivial kernel. But
then also h has a non-trivial kernel (k C K being faithfully flat), which contradicts our earlier
conclusion that it is injective. O

Exercises.
(5.1) Let f: X — Y be a surjective homomorphism of abelian varieties. Show that f is flat.

(5.2) Let k£ = F,. By definition, «, is a subgroup scheme of G,, so that we get a natural
action p: o, X G, — G,. Similarly, u, is a subgroup scheme of G,,, which gives an action
o: pip X Gy, — Gy,
(i) Identify G,, with the open subscheme of G, given by x # 0. Show that the action p restricts
to a free action p’ of a;, on G,,, and that the Frobenius endomorphism F: G,, — G,,, given
on points by x — 2P, is a quotient morphism for p’.
(ii) Conclude that o and p" give rise to the same quotient morphism, even though «, 2 p,,.
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Chapter VI. The Picard scheme of an abelian variety.

§1. Relative Picard functors.

To place the notion of a dual abelian variety in its context, we start with a short discussion of
relative Picard functors. Our goal is to sketch some general facts, without much discussion of
proofs.

Given a scheme X we write

Pic(X) = H'(X,0%) = {isomorphism classes of line bundles on X},

which has a natural group structure. (If 7 is either the Zariski, or the étale, or the fppf topology
on Sch,x then we can also write Pic(X) = H}(X,Gy,), viewing the group scheme G,,, = G, x
as a T-sheaf on Sch,x; see Exercise 77.)

If C is a complete non-singular curve over an algebraically closed field k then its Jacobian
Jac(C') is an abelian variety parametrizing the degree zero divisor classes on C' or, what is the
same, the degree zero line bundles on C. (We refer to Chapter 14 for further discussion of
Jacobians.) Thus, for every k C K the degree map gives a homomorphism Pic(Ck) — Z, and
we have an exact sequence

0 — Jac(C)(K) — Pic(Cx) — Z — 0.

In view of the importance of the Jacobian in the theory of curves one may ask if, more generally,
the line bundles on a variety X are parametrized by a scheme which is an extension of a discrete
part by a connected group variety.

If we want to study this in the general setting of a scheme f: X — S over some basis S, we
are led to consider the contravariant functor Px,g: (Sch, 5)? — Ab given by

Px;s: T — Pic(X7) = H'(X x5 T,G,) .

However, one easily finds that this functor is not representable (unless X = ().). The reason
for this is the following. Suppose {U,}aca is a Zariski covering of S and L is a line bundle
on X such that the restrictions L|x .y, are trivial. Then it is not necessarily the case that
L is trivial. This means that Py /g is not a sheaf for the Zariski topology on Sch /g, hence not
representable. (See also Exercise (6.1).)

The previous arguments suggest that in order to arrive at a functor that could be repre-
sentable we should first sheafify (or “localize”) Px/s with respect to some topology.

(6.1) Definition. The relative Picard functor Picy,s: (Sch/s)® — Ab is defined to be the fppf
sheaf (on (S)rppr) associated to the presheaf Px/s. An S-scheme representing Picy g (if such
a scheme exists) is called the relative Picard scheme of X over S.

Concretely, if T is an S-scheme then we can describe an element of Picy,g(7') by giving an
fppf covering 77 — T and a line bundle L on X7 x7 T’ such that the two pull-backs of L to
X7 X1 (T" xpT'") are isomorphic. Now suppose we have a second datum of this type, say an fppf

DualAVl, 8 februari, 2012 (635)
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covering U" — T and a line bundle M on X7 x7 U’ whose two pull-backs to Xp x1 (U’ xp U’)
are isomorphic. Then (7" — T,L) and (U" — T, M) define the same element of Picy,s(7T)
if there is a common refinement of the coverings 7" and U’ over which the bundles L and M
become isomorphic.

As usual, if Picy,s is representable then the representing scheme is unique up to S-
isomorphism; this justifies calling it the Picard scheme.

(6.2) Let us study Picx /g in some more detail in the situation that

the structure morphism f: X — S is quasi-compact and quasi-separated,
(%) f+(Oxxs1) = Op for all S-schemes T,
f has a section e: S — X.

For instance, this holds if S is the spectrum of a field k£ and X is a complete k-variety with
X (k) # 0 (see also Exercise 77); this is the case we shall mostly be interested in.

Rather than sheafifying Px,s we may also rigidify the objects we are trying to classify.
This is done as follows. If L is a line bundle on X7 for some S-scheme T then, writing ep: T —
X for the section induced by €, by a rigidification of L along er we mean an isomorphism
a: Op = ¢4 L. (In the sequel we shall usually simply write ¢ for er.)

Let (L1, 1) and (Lg, a2) be line bundles on X with rigidification along €. By a homomor-
phism h: (L1, 1) — (L2, a3) we mean a homomorphism of line bundles h: Ly — Ly with the
property that (¢*h)oa; = as. In particular, an endomorphism of (L, «) is given by an element
h € I(Xr,0x,) = T(T, f«(Ox,)) with £*(h) = 1. By the assumption that f.(Ox,) = Or we
therefore find that rigidified line bundles on X7 have no nontrivial automorphisms.

Now define the functor Px,g.: (Sch,5)° — Ab by

P 7 isomorphism classes of rigidified
X/8.22 577 line bundles (L,a)on X xgT [~

with group structure given by

(L7€U '(Aivﬁ) ::(I’@)AJ?V)?
Yy=a®pB:0r=07r @ Op "L @e*M=c"(Le M).
OT OT

If h: T" — T is a morphism of S-schemes and (L, «) is a rigidified line bundle on X xg T then
Px/s,:(h): Px;s.(T) — Px;s,(T") sends (L, ) to (L',a’), where L' = (idx x h)*L and where
o: Opr — ek, L' = h*(e5.L) is the pull-back of o under h.

Suppose Px/g,. is representable by an S-scheme. On X x g Px/g . we then have a universal
rigidified line bundle (£, v); it is called the Poincaré bundle. The universal property of (£, 1)
is the following: if (L, «) is a line bundle on X x ¢ T" with rigidification along the section & then
there exists a unique morphism g: ' — Px/g . such that (L, ) = (idx x g)*(Z?,v) as rigidified
bundles on Xr.

Under the assumptions (*) on f it is not so difficult to prove the following facts. (See for
example BLR, § 8.1 for details.)

(i) For every S-scheme T there is a short exact sequence

0 — Pic(T) 255 Pic(X7) — Picy,s(T). (1)
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This can be viewed as a short exact sequence obtained from a Leray spectral sequence. The
existence of a section is not needed for this.
(ii) For every S-scheme T', we have an isomorphism

Pic(X7)/priPic(T) — Px/s.(T)

obtained by sending the class of a line bundle L on X7 to the bundle L ® f*<*L~! with its
canonical rigidification.

(iii) The functor Py/g. is an fppf sheaf. (Descent theory for line bundles.)

Combining these facts we find that Px/s . = Picx,s and that these functors are given by

Pic(X7) {line bundles on X1}

T = .
~ pri-Pic(T')  {line bundles of the form f*L, with L a line bundle on T'}

In particular, the exact sequence (1) extends to an exact sequence
0 — Pic(T") — Pic(Xr) — Picx,s(T) — 0. (2)
It also follows that Picx,s equals the Zariski sheaf associated to Px/g.

(6.3) Returning to the general case (i.e., no longer assuming that f satisfies the conditions ()
in (6.2)), one finds that Picx /s cannot be expected to be representable unless we impose further
conditions on X/S. (See Exercise ?? for an example.) The most important general results
about representability all work under the assumption that f: X — S is proper, flat and of finite
presentation. We quote some results:

(i) If f is flat and projective with geometrically integral fibres then Picx /g is representable
by a scheme, locally of finite presentation and separated over S. (Grothendieck, FGA, Exp. 232.)

(ii) If f is flat and projective with geometrically reduced fibres, such that all irreducible
components of the fibres of f are geometrically irreducible then Picy,s is representable by
a scheme, locally of finite presentation (but not necessarily separated) over S. (Mumford,
unpublished.)

(iii) If S = Spec(k) is the spectrum of a field and f is proper then Picy, g is representable
by a scheme that is separated and locally of finite type over k. (Murre [1], using a theorem of
Oort [1] to reduce to the case that X is reduced.)

If we further weaken the assumptions on f, e.g., if in (ii) we omit the condition that the
irreducible components of the fibres are geometrically irreducible, then we may in general only
hope for Picx /g to be representable by an algebraic space over S. Also if we only assume X /S
to be proper, not necessarily projective, then in general Picy /g will be an algebraic space rather
than a scheme. For instance, in Grothendieck’s FGA, Exp. 236 we find the following criterion.

(iv) If f: X — S is proper and locally of finite presentation with geometrically integral
fibres then Picy,g is a separated algebraic space over S.

We refer to 77, 77 for further discussion.

(6.4) Remark. Let X be a complete variety over a field k, let Y be a k-scheme and let L be
a line bundle on X x Y. The existence of maximal closed subscheme Yy — Y over which L is
trivial, as claimed in Proposition (2.4), is an immediate consequence of the existence of Picx/y.
Namely, the line bundle L gives a morphism Y — Picx/, and Y is simply the fibre over the
zero section of Picx/, under this morphism. (We use the exact sequence (1); as remarked earlier
this does not require the existence of a rational point on X.)
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Let us now turn to some basic properties of Picx,g in case it is representable. Note that
Picx/s comes with the structure of an S-group scheme, so that the results and definitions of
Chapter 3 apply.

(6.5) Proposition. Assume that f: X — S is proper, flat and of finite presentation, with
geometrically integral fibres. As discussed above, Picx s is a separated algebraic space over S.
(Those who wish to avoid algebraic spaces might add the hypothesis that f is projective, as in
that case Picx,g is a scheme.)

(i) Write J for the relative tangent sheaf of Picx,g over S. Then the sheaf e*.7 (“the
tangent space of Picy,g along the zero section”) is canonically isomorphic to R'f.Ox.

(i) Assume moreover that f is smooth. Then every closed subscheme Z < Picx /s which
is of finite type over S is proper over S.

For a proof of this result we refer to BLR, Chap. 8.

(6.6) Corollary. Let X be a proper variety over a field k.

(i) The tangent space of Picx s at the identity element is isomorphic to H*(X,Ox). Fur-
ther, Picg(/s is smooth over k if and only if dim Picgqs = dim H'(X, Ox), and this always holds
if char(k) = 0.

(ii) If X is smooth over k then all connected components of Picx ;, are complete.

Proof. This is immediate from (6.5) and the results discussed in Chapter 3 (notably (3.17)
and (3.20)). As we did not prove (6.5), let us here give a direct explanation of why the tangent
space of Picx /s at the identity element is isomorphic to H 1(X,0x), and why the components
of Picx/;, are complete.

Let S = Spec (k[e]), where k] is the ring of dual numbers over k. Note that X and Xg
have the same underlying topological space. On this space we have a short exact sequence of
sheaves

0— Ox 2% 0%, =505 — 1
where h is given on sections by f — exp(ef) = 1+ ef and where res is the natural restriction
map. On cohomology in degree zero this gives the exact sequence

0—k— k]! —k —1

where the maps are given by f+— 1+ ¢cf and a + €b — a. On cohomology in degree 1 we then
find an exact sequence

0 — HY(X,0x) 25 Pic(Xg) == Pic(X). (3)

Concretely, if v € H'(X,Ox) is represented, on some open covering 4 = {U, }aca, by a Cech
1-cocyle {fap € Ox(Uy NUg)} then h(7) is the class of the line bundle on Xg which is trivial
on each U, (now to be viewed as an open subset of Xg) and with transition functions 1+ € f,3.

Write T for the tangent space of Picx/ at the identity element. We can descibe T' as the
kernel of the restriction map Picy;(S) — Picy,(k); see Exercise 1.2. If v € H'(X,Ox) then
h(y) restricts to the trivial class on X. Hence v defines an element of T', and this gives a linear
map & HY(X,0x) — T. As Pic(S) = {1} it follows from the exact sequences (1) and (3) that
£ is injective.

So far we have not used anything about X. To prove that £ is also surjective it suffices to
show that dim (H'(X,0Ox)) = dim(T). Both numbers do not change if we extend the ground
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field. Without loss of generality we may therefore assume that X (k) is non-empty, so that
assumptions (%) in (6.2) are satisfied. Then the surjectivity of the map £ follows from the exact
sequence (2). This proves that H'(X,0x) — T.

Next let us explain why the components of Picx,s are complete. We already know that
Picx /s is a group scheme, locally of finite type over k. By Propositions (3.12) and (3.17), all
connected components are separated and of finite type over k. To show that they are complete,
we may extend the ground field; hence we can again assume that the assumptions () in (6.2) are
satisfied. In this situation we apply the valuative criterion for properness. Let R be a k-algebra
which is a dvr. Let K be its fraction field, and suppose we have a K-valued point of Picx y,
say represented by a line bundle L on Xx. We want to show that L extends to a line bundle
on Xp. Since X/k is smooth, L is represented by a Weil divisor. But if P C Xk is any prime
divisor then the closure of P inside Xy is a prime divisor of Xg. It follows that L extends to a
line bundle on Xg. ]

(6.7) Remark. If char(k) = p > 0 then Picx/; is in general not reduced, even if X is smooth
and proper over k. An example illustrating this will be given in (7.31) below.

(6.8) Let C be a complete curve over a field k. Then Picc/y, is a group scheme, locally of finite
type over k; see (6.3). We claim that Picc/y is smooth over k. To see this we may extend
the ground field and assume that C(k) # 0, so that the assumptions (%) in (6.2) are satisfied.
Because Picg/y, is locally of finite type over k, it suffices to show that any point of Picg/;, with
values in Ry := k[t]/(t") can be lifted to a point with values in R := k[t]/(t"*!). But if we have
a line bundle Ly on C' ®; Ry then the obstruction for extending Ly to a line bundle on C ®; R
lies in H%(C,O¢), which is zero because C is a curve.

In particular, we find that the identity component Picoc /i 18 a group variety over k. If in
addition we assume that C' is smooth then by Cor. (6.6) Picg /i 1s complete, and is therefore an
abelian variety. In this case we usually write Jac(C) for Picg /13 1t is called the Jacobian of C.
Jacobians will be further discussed in Chapter 14. We remark that the term “Jacobian of C”,
for a complete and smooth curve C/k, usually refers to the abelian variety Jac(C) := Picy Jk
together with its natural principal polarisation.

(6.9) Remark. Suppose X is a smooth proper variety over an algebraically closed field k. Recall
that two divisors D; and D are said to be algebraically equivalent (notation Dq ~yui, Do) if
there exist (i) a smooth k-variety T', (ii) codimension 1 subvarieties Z1, ..., Z, of X x; T which
are flat over T, and (iii) points t1,to € T'(k), such that Dy — Dy = >0 [ (Zi)t, — (Zi)s, as
divisors on X; here (Z;); := Z; N (X x {t}), viewed as a divisor on X. Translating this to line
bundles we find that D; ~gs Do precisely if the classes of L1 = Ox(D;) and Ly = Ox (D3) lie
in the same connected component of Picy ;. (Note that the components of the reduced scheme
underlying Picy;, are smooth k-varieties.) The discrete group mo(Picy,;) = Picx,i/ Pic% /K 18
therefore naturally isomorphic to the Néron-Severi group NS(X) := Div(X)/ ~aiz. For a more
precise treatment, see section (7.24).

§2. Digression on graded bialgebras.

In our study of duality, we shall make use of a structure result for certain graded bialgebras.
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Before we can state this result we need to set up some definitions.

Let k be a field. (Most of what follows can be done over more general ground rings; for our
purposes the case of a field suffices.) Consider a graded k-module H®* = @,,>0H". An element
x € H* is said to be homogeneous if it lies in H™ for some n, in which case we write deg(x) = n.
By a graded k-algebra we shall mean a graded k-module H* together with a unit element 1 € H°
and an algebra structure map (multiplication) v: H®* @, H* — H® such that

(i) the element 1 is a left and right unit for the multiplication;

(ii) the multiplication ~ is associative, i.e., y(z,v(y, 2)) = v(y(z,y), 2) for all z, y and z;

(iii) the map = is a morphism of graded k-modules, i.e., it is k-linear and for all homogeneous
elements x and y we have that v(z,y) is homogeneous of degree deg(x) + deg(y).

If no confusion arises we shall simply write zy for ~v(x,y).

A homomorphism between graded k-algebras H; and H; is a k-linear map f: H} — Hj
which preserves the gradings, with f(1) = 1 and such that f(xy) = f(z)f(y) for all z and y
in Hy.

We say that the graded algebra H® is graded-commutative if

zy = (— 1)dcg(z)dcg(y) yx

for all homogeneous z,y € H*. (In some literature this is called anti-commutativity, or some-
times even commutativity.) The algebra H*® is said to be connected if HY = k - 1; it is said
to be of finite type over k if dimy(H"™) < oo for all n (which is weaker than saying that H* is
finite-dimensional).

If H} and H5 are graded k-algebras then the graded k-module H; ®j H5 inherits the
structure of a graded k-algebra: for homogeneous elements x,{ € H; and y,n € H3 one sets
(x®@7y) - (E@n) = (—1)dsWdeel©) . (£¢ @ yn). As an exercise the reader may check that H* is
graded-commutative if and only if the map v: H* ® H* — H® is a homomorphism of graded
k-algebras. The field k itself shall be viewed as a graded k-algebras with all elements of degree
Zero.

(6.10) Definition. A graded bialgebra over k is a graded k-algebra H*® together with two
homomorphisms of k-algebras

w: H® — H® @, H* called co-multiplication,
e H — k the identity section,

such that
(L@id)op = (id@pu)opu: H* — H* @ H* @ H*
and
(e®id)op=(id®e)ou: H* — H®
(using the natural identifications H* @ k = H* =k Q) H").
(6.11) Examples. (i) If all elements of H* have degree zero, i.e., H* = H°, then we can ignore
the grading and we “almost” find back the definition of a Hopf algebra as in (3.9). The main

distinction between Hopf algebras and bialgebras is that for the latter we do not require an
antipode.
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(ii) If V' is a vector space over k then we can form the exterior algebra A°V = @&,>¢ A" V.
The multiplication is given by the “exterior product”, i.e.,

Ty Ao ANp) - (i A AYs) =1 A AT Ay Ao A ys

By definition we have A°V = k.

A k-linear map V; — V5, induces a homomorphism of graded algebras A*V; — A*V,. Fur-
thermore, there is a natural isomorphism A*(V @ V) = (A*V) ® (A*V). Therefore, the di-
agonal map V. — V @ V induces a homomorphism pu: AV — A*V ® A*V. Taking this as
co-multiplication, and defining : A*V — k to be the projection onto the degree zero component
we obtain the structure of a graded bialgebra on A*V.

(iii) If Hy and H; are two graded bialgebras over k then H; ®j; H5 naturally inherits
the structure of a graded bialgebra; if a € Hj with pi(a) = > z; ® & and b € H; with
p2(b) = > y; ®n; then the co-multiplication 1 = 1 ® o is described by

pwla®b) = Z(—l)dcg(y“dcg(&)(ﬂﬁi ®yj) @ (& @ ;).
(]

(iv) Let x1, z2, . . . be indeterminates. We give each of them a degree d; = deg(x;) > 1 and we
choose s; € Z>5U{oo}. Then we can define a graded-commutative k-algebra H® = k(z1,x2,...)
generated by the x;, subject to the conditions x;" = 0. Namely, we take the monomials

m =zt Ty? - (r; # 0 for finitely many 1)
as a k-basis, with deg(m) = ridy +rada + - - -, and where we set 27" = 0. Then there is a unique

graded-commutative multiplication law such that v(z;,z;) = x;2; for ¢ < j, and with this
multiplication k(x1,za,...) becomes a graded k-algebra. Note that k(z1,x2,...zN) is naturally
isomorphic to k(z1) ® - - @ k{zn).

It is an interesting question whether k(x1,x2,...) can have the structure of a bialgebra. It
turns out that the existence of such a structure imposes conditions on the numbers d; and s;.
Let us first do the case of one generator; the case of finitely many generators will follow from
this together with Borel’s theorem to be discussed next. So, we consider a graded k-algebra
H*® = k(x | x* = 0) with deg(x) = d > 0. Suppose that H*® has the structure of a bialgebra.
Then:

conditions on s:

char(k) =0, d odd s=2

char(k) = 0, d even §=00

char(k) = 2 either s = oo or s = 2" for some n
char(k) = p > 2, d odd s=2

char(k) = p > 2, d even either s = oo or s = p" for some n

For a proof of this result (in fact a more general version of it) we refer to Milnor and Moore [1],
§ 7. Note that the example given in (ii) is of the form k(z;, 2, ...) where all z; have d; = 1 and
S; = 2.

(6.12) Theorem. (Borel-Hopf structure theorem) Let H* be a connected, graded-commutative
bialgebra of finite type over a perfect field k. Then there exist graded bialgebras H; (i =1,...,r)
and an isomorphism of bialgebras

H' '~ H! @ @y HE

r
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such that the algebra underlying H; is generated by one element, i.e., the algebras H; are of
the form k(x; | ;' = 0), with deg(x;) = d; > 0.

For a proof of this result, which is due to A. Borel, we refer to Borel [1] or Milnor and
Moore [1].

BorHCor (6.13) Corollary. Let H*® be as in (6.12). Assume there is an integer g such that H" = (0) for
alln > g. Then dimg(H') < g. If dimy,(H') = g then H* = A"H' as graded bialgebras.

Proof. Decompose H®* = H;} ®j, -+ ® H; as in (6.12). Note that dimy(H') equals the number
of generators x; such that d; = 1. Now z;-- -z, (= 21 ® --- ® z,) is a nonzero element of
H* of degree dy + -+ + d,. Therefore dy + --- + d, < g, which implies dimy(H') < g. Next
suppose dimg(H') = g, so that all generators z; have degree 1. If 22 # 0 for some i then
T - ~~:1:i_13:?:1:i+1 -+ T4 is a nonzero element of degree g + 1, contradicting our assumptions.
Hence x? = 0 for all i which means that H® = A*H!. O

BorHAppl (6.14) Let us now turn to the application of the above results to our study of abelian varieties.
Given a g-dimensional variety X over a field &, consider the graded k-module

H. :H.(X,Ox) = éH”(X,OX)

n=0

Cup-product makes H*® into a graded-commutative k-algebra, which is connected since X is
connected.

In case X is a group variety the group law induces on H* the structure of a graded bialgebra.
Namely, via the Kiinneth formula H*(X x;, X,0xxx) = H*(X,0x)®, H*(X,Ox) (which is an
isomorphism of graded k-algebras), the group law m: X x; X — X induces a co-multiplication

w: H* — H® @, H® .

For the identity section e: H® — k we take the projection onto the degree zero component, which
can also be described as the map induced on cohomology by the unit section e: Spec(k) — X.
Now the statement that these u and e make H*® into a graded bialgebra over k becomes a simple
translation of the axioms in (1.2) satisfied by m and e.

As a first application of the above we thus find the estimate dimy(H'(X,0x)) < g for a
g-dimensional group variety X over a field k. (Note that dimy(H'(X,0Ox)) does not change
if we pass from k to an algebraic closure; we therefore need not assume k to be perfect.) For
abelian varieties we shall prove in (6.18) below that we in fact have equality.

We summarize what we have found.

DimEstim (6.15) Proposition. Let X be a group variety over a field k. Then H*(X,Ox) has a natural
structure of a graded k-bialgebra. We have dimy(H!(X,0x)) < dim(X).

To conclude this digression on bialgebras, let us introduce one further notion that will be
useful later.

PrimEltDef (6.16) Definition. Let H*® be a graded bialgebra with comultiplication p: H* — H® ® H".
Then an element h € H* is called a primitive element if u(h) =h®1+1® h.
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PrimEltLem (6.17) Lemma. Let V be a finite dimensional k vector space, and consider the exterior algebra
AV asin (6.11). Then V = A'V C AV is the set of primitive elements in A"V .

Proof. We follow Serre [1]. Since the co-multiplication pu is degree-preserving, an element of a
graded bialgebra H*® is primitive if and only if all its homogeneous components are primitive.
Thus we may restrict our attention to homogeneous elements of A*V.

It is clear that the non-zero elements of A°V = k are not primitive. Further we see directly
from the definitions that the elements of A'V = V are primitive. Let now y € A"V with n > 2.
Write

(AV)@ (AV)"= P MV eaV,
ptq=n
and write p(y) = > u(y)P? with u(y)»? € APV @ AYV. For instance, one easily finds that
wu(y)™° =y = u(y)®™ via the natural identifications A"V @ k = A"V =k @ A"V. Similarly, we

find that the map y — u(y)>"~! is given (on decomposable tensors) by

n
VA A o Y (D) T @ (0 A AT A Ay).
=1

It follows that for A € V* the composition A"V — V @ A"V — A"V given by y +—
(A®id)(u(y)t™=1) is just the interior contraction y — y 2\, The assumption that y is primitive
and n > 2 implies that u(y)»"~1 = 0 so we find y A = 0 for all A € V*. This only holds for
y=0. 0

§3. The dual of an abelian variety.

From now on, let m: X — S = Spec(k) be an abelian variety over a field k. We shall admit from
the general theory that Picx/y is a group scheme over k with projective connected components.
One of the main results of this section is that Pic% /i s reduced, and is therefore again an abelian
variety.

Note that Picx/, also represents the functor Px i o of line bundles with rigidification along
the zero section. As above, the identification between the two functors is given by sending the
class of a line bundle L on X x; T to the class of L ® prie*L~! with its canonical rigidification
along {0} x 7. (In order to avoid the notation 0*L we write e for the zero section of Xrp.)
In particular, we have a Poincaré bundle & on X x; Picy,; together with a rigidification
a: Opicy . — P|{0}xPicx u-

If L is a line bundle on X we have the associated Mumford bundle A(L) on X x X. In
order to distinguish the two factors X, write X(!) = X x {0} and X = {0} x X. Viewing
A(L) as a family of line bundles on X(!) parametrised by X(? we obtain a morphism

@L: X = X(Q) — PiCX/k

which is the unique morphism with the property that (idx x ¢r)*2% = A(L). On points, the
morphism ¢y, is of course given by z — [tiL ® L™1], just as in (2.10). We have seen in (2.10),
as a consequence of the Theorem of the Square, that ¢ is a homomorphism. Further we note
that ¢y, factors through Picg(/k, as X is connected and ¢, (0) = 0.
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(6.18) Theorem. Let X be an abelian variety over a field k. Then Picg(/k is reduced, hence it
is an abelian variety. For every ample line bundle L. the homomorphism pr: X — Picg( /K 1S an
isogeny with kernel K (L). We have dim(Picg(/k) = dim(X) = dim H'(X,O0x).

Proof. Let L be an ample line bundle on X. By Lemma (2.17), ¢, has kernel K(L). Since
K (L) is a finite group scheme it follows that dim(Picg(/k) > dim(X). Combining this with (6.6)
and (6.15) we find that dim(Picg(/k) = dim(X) = dim, H'(X,0Ox) and that Picg(/k is re-
duced. O

(6.19) Definition and Notation. The abelian variety X* := Picg(/k is called the dual of X.
We write &2, or Py, for the Poincaré bundle on X x X! (i.e., the restriction of the Poincaré
bundle on X x Picx/, to X x X Y. If f: X — Y is a homomorphism of abelian varieties over k
then we write f: Yt — X for the induced homomorphism, called the dual of f or the transpose
of f. Thus, f! is the unique homomorphism such that

(id x 1) Py 2= (F x id)* Py
as line bundles on X x Y with rigidification along {0} x Y.

(6.20) Remark. We do not yet know whether f — f* is additive; in other words: if we have
two homomorphisms f, g: X — Y, is then (f+g)! equal to f*+g* ? Similarly, is (nx)! equal to
nxt 7 We shall later prove that the answer to both questions is “yes”; see (7.17). Note however
that such relations certainly do not hold on all of Picx/; for instance, we know that if L is a

line bundle with (—1)*L = L then n*L = L™ which is in general not isomorphic to L".

Exercises.

(6.1) Show that the functor Px,g defined in §1 is never representable, at least if we assume X
to be a non-empty scheme.

(6.2) Let X and Y be two abelian varieties over a field k.

(i) Writeix: X — X xY and iy: Y — X x Y for the maps given by z — (z,0) and y — (0,y),
respectively. Show that the map (i%;, 4t ): (X x Y)! — X' x Y that sends a class [L] €
PiC?Xxy)/k to ([L1xxo})s [Li{oyxy]), is an isomorphism. [Note: in general it is certainly
not true that the full Picard scheme Picx .y, is isomorphic to Picy,; x Picy ]

(i) Write

P X XY xX'xY— XxX" and ¢ X xY xX'xY! —YxY!
for the projection maps. Show that the Poincaré bundle of X x Y is isomorphic to p* P x ®
q*<gzyn

(6.3) Let L be aline bundle on an abelian variety X. Consider the homomorphism (1, ¢r): X —
X x X*. Show that (1,¢7)*Px = L® (—1)*L.

(6.4) The goal of this exercise is to prove the restrictions listed in (iv) of (6.11). We consider a
graded bialgebra H* over a field k, with co-multiplication . We define the height of an element
x € H*® to be the smallest positive integer n such that z™ = 0, if such an n exists, and to be oo
if z is not nilpotent.
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If y € H* is an element of odd degree, and char(k) # 2, show that y* = 0.

If z € H* is primitive, show that u(z") = Y1  (7)2' ® 2" ~*. Conclude that if = has height
n < oo then char(k) = p > 0 and n is a power of p.

If H* = k(z | 2° = 0) with deg(z) = d, show that z is a primitive element. Deduce the

restrictions on the height of x listed in (iv) of (6.11).
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Chapter VII. Duality.

§1. Formation of quotients and the descent of coherent sheaves.

(7.1) Definition. Let S be a base scheme. Let p: G xg X — X be an action (from the left) of
an S-group scheme G on an S-scheme X. Let F' be a coherent sheaf of Ox-modules. Then an
action of G on F, compatible with the action p, is an isomorphism \: prjF' -~ p*F of sheaves
on GG xg X, such that on G xg G xg X we have a commutative diagram

pr3F P, prazp” F
(mxidx)*()\)l l(idcxp)*(A)
(m xidx)*p*F =—  (idg x p)*p*F

Here is a more concrete explanation of what this means. If 7" is an S-scheme and g € G(T),
write pg: X7 — Xp for the action of the element g. Then to have an action of G on F
that is compatible with p means that for every g € G(T) we have an isomorphism of sheaves
Ag: Fr = p} Fr such that A, = pj,(Ag) e Ay for all g, h e G(T).

If F'is a locally free Ox-module we can take a more geometric point of view. First recall
that a locally free Ox-module is “the same” as a geometric vector bundle over X. Namely,
V :=V(FY) is a geometric vector bundle over X, and F' is the sheaf of sections of the structure
morphism m: V' — X. Then a p-compatible G-action on F' corresponds to an action p: GxgV —
V such that (i) the structure morphism m: V' — X is G-equivariant, and (ii) the action p is
“fibrewise linear”, meaning that for every S-scheme 7" and every g € G(T), z € X(T), the
isomorphism p(g): V, — Vi is Op-linear. We refer to such an action p as a lifting of p.

With this notion of a G-action on a sheaf, we can formulate a useful result on the descent
of modules.

(7.2) Proposition. Let p: G xg X — X be an action of an S-group scheme G on an S-
scheme X. Suppose there exists an fppf quotient p: X — Y of X by G. If F is a coherent
sheaf of Oy-modules then the canonical isomorphism Acan: pri(p*F) — p*(p*F) defines a p-
compatible G-action on p*F. The functor F' +— (p*F, Acan) gives an equivalence between the
category of coherent Oy -modules and the category of coherent O x-modules with (p-compatible)
G-action. This restricts to an equivalence between the category of finite locally free Oy -modules
and the category of finite locally free O x-modules with G-action.

This proposition should be seen as a statement in (faithfully flat) descent theory; it follows
for instance from the results of SGA 1, Exp. VIII, § 1. (See also [BLR], § 6.1, Thm. 4.) Given
such results in descent theory, the only point here is that a p-compatible G-action on a coherent
O x-module is the same as a descent datum on this module. (Recall that we have an isomorphism
(p,pry): G x5 X — X xy X.) The assertion that finite locally free Ox-modules with G-action
give rise to finite locally free Oy-modules follows from EGA IV, Prop. 2.5.2.

(7.3) Example. We consider the situation of the proposition. The geometric vector bundle
corresponding to the structure sheaf Ox is just the affine line A% over X.

DualAV2, 8 februari, 2012 (635)
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On Ox (geometrically: on AL) we have a “trivial” action pyy, given by
ﬁtrivszidAg: GXSAkv =GxgX XSA}Q—>X><SA}QZA§(.

The Oy-module corresponding to (Ox, priv) is just Oy itself.

Let p be some other lifting of p to a G-action on AL. Let T be an S-scheme and g €
G(T). The automorphism p(g) - periv(g) ™" of AL xg T = Aﬁ(T is given on every fibre Al
by some (invertible) scalar multiplication. This means that p(g) - periv(g) ™"
element v(g) € I'(X7,0%,.). We find that an action p gives rise to a morphism of functors

is given by an

v: G — Resx/sGy,, x on the category Sch,g. The condition that p is a group action means that
v satisfies a cocycle condition v(g1g2)(z) = v(g1)(922) - v(g2) (), where we simply write goz for
p(gg)(a:). Conversely, given a morphism v: G — Resx;sG,, x that satisfies this condition, one
finds back a G-action p by p(g) = v(9) - Priv(9)-

Now suppose that the structure morphism f: X — S satisfies f.(Ox,) = O for all S-
schemes T'. This holds for instance if X is a proper variety over a field. Then Resx/sGy,, x =
Gm,s as functors on Sch,g. In particular, any morphism v: G — Resx;sGn x is G-invariant,
in the sense that for all g1, g» € G(T) and = € X(T) we have v(g1)(g22) = v(g1) (). Hence the
cocycle condition in this case just says that v is a homomorphism. So the conclusion is that the
liftings p of p to a G-action on Ak are in bijective correspondence with Homgsch 15(G,Gy). In
case G is a commutative, finite locally free S-group scheme this is just the Cartier dual GP(9).

Via Proposition (7.2), we can use this to obtain a description of the line bundles L on Y
such that p*L =2 Ox. The result is as follows.

(7.4) Proposition. Let G be a commutative, finite locally free S-group scheme. Let p: G X g
X — X be a free action of G on an S-scheme X. Let p: X — Y be the quotient of X by G.
Suppose that f.(Ox,) = Or for all S-schemes T'. Then for any S-scheme T there is a canonical
isomorphism of groups

_ (isomorphism classes of line bundles\ ~ _ p
o7 < L on Yy with p*L & Ox,, — @),

and this isomorphism is compatible with base change T — T.

Proof. To define §r for arbitrary S-schemes T we may replace S by T and p: X — Y by
pr: Xp — Yp. Note that by Theorem (4.16) and what was explained in Example (4.29), pr is
again the quotient morphism of X7 by the action of G, and of course also the assumption that
f+(Ox,) = Orp for all S-schemes T is preserved under base change. Hence it suffices to define
the isomorphism dg.

Let L be a line bundle on Y with p*L = Ox. Via the choice of an isomorphism a: p*L —
Ox (or, more geometrically, the isomorphism a: p*V(L~!) = AL over X) the canonical G-
action on p* L translates into a G-action p on Ak, and as explained above this gives us a character
v: G — Gy, 5. We claim that this character is independent of the choice of a. In general, any
other isomorphism p*L — Oy is of the form o/ = yoa for some v € I'(X, 0% ). Write p and 5’
for the G-actions on Ak obtained using o and o/, respectively, and let v and v’ be the associated
characters. If g € G(T) and y is a T-valued point of p*V(L™!) lying over z € X(T) then we
have the relations

v (9,0 (1)) = (@) - puiv (9, a(y)) and  §'(g,0'(y)) = v(g9z) - p(g, a(y)) ,
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where () is the image of v under the homomorphism I'(X, O% ) — I'(T, O%.) induced by z: T —
X, and similarly for v(gz). (Note that elements such as j(g,a(y)) are T-valued points of Ak
lying over the point gx € X(T'), and on such elements we have the “fibrewise” multiplication by
functions on 7'.) But now our assumption that f.(Ox) = Og implies that v is the pull-back of
an element in I'(S, 0%), so y(z) = v(gz). Hence v =1/, as claimed.

Now we can simply apply the conclusion from (7.3), and define dg as the map that sends the
isomorphism class of L to the character v: G — G, g given on points by v(g) = p(g) - priv(g)
By Proposition (7.2), together with what was explained in Example (7.3), the map dg thus
obtained is indeed an isomorphism.

Finally we note that the maps d7 are indeed compatible with base change, as is immediate
from the construction. O

§2. Two duality theorems.

(7.5) Theorem. Let f: X — Y be an isogeny of abelian varieties. Then f': Y* — X is again
an isogeny and there is a canonical isomorphism of group schemes

Ker(f)P =5 Ker(f!).

Proof. If T is a k-scheme, any class in Ker(f*)(T) is uniquely represented by a line bundle L
on Y7 such that f*L = Ox,.. Indeed, if L’ represents a class in Ker(f*)(T) then there is a line
bundle M on T such that f*L’ = priM. Then L := L' ® prixM ! represents the same class
as L' and satisfies f*L = Ox,.. Conversely, if L; and Ly represent the same class then they
differ by a line bundle of the form pr7}.M; hence f*L; = f* Lo implies L; = Lo.

Applying Proposition (7.4) we obtain the desired isomorphism Ker(f!) — Ker(f)P. In
particular this shows that f! has a finite kernel and therefore is again an isogeny. O

(7.6) Proposition. Let f: X — Y be a homomorphism. Let M be a line bundle on Y and
write L = f*M. Then ¢r: X — Xt equals the composition

x oy ey It

If f is an isogeny and M is non-degenerate then L is non-degenerate too, and rank(K (L)) =
deg(f)? - rank(K (M)).

Proof. That ¢, = ftoppof is clear from the formula ¢%f*M = f*t}(z)M. For the second
assertion recall that a line bundle L is non-degenerate precisely if ¢y is an isogeny, in which

case rank(K (L)) = deg(¢r). Now use (7.5). O

(7.7) The Poincaré bundle on X x X* comes equipped with a rigidification along {0} x X*. As
P xx {0y = Ox we can also choose a rigidification of & along X x {0}. Such a rigidification is
unique up to an element of I'(X, O% ) = k*. Hence there is a unique rigidification along X x {0}
such that the two rigidifications agree at the origin (0,0).

Now we view Z as a family of line bundles on X* parametrised by X. This gives a morphism

kx: X — X,
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As kx(0) = 0 it follows from Prop. (1.14) that xx is a homomorphism.

(7.8) Lemma. Let L be a line bundle on X. Then ¢, = ¢t orx: X — X,
Proof. Let s: X x X — X x X and s: X x X! — X! x X be the morphisms switching the two

~

factors; on points: s(x,y) = (y,x). We have a canonical isomorphism s*A(L) = A(L). Let T be
a k-scheme and = € X(7T'). Writing [M] for the class of a bundle M on X x T in Picg(/k(T) we
have

or(z) = [(X x T 292, x » X)*A(L)}
(XxTMXxxLXxX)*A(L)]

idxx idxer,

- -(X><T—>X><Xi>X><X—>X><Xt)*<@]

(X x T 2209, xt o ddxe, xt xXLXxXt)*gﬂ — b orx ().
As this holds for all T and = the lemma is proven. O

(7.9) Theorem. Let X be an abelian variety over a field. Then the homomorphism kx: X —
X' is an isomorphism.

Proof. Choose an ample line bundle L on X. The formula ¢, = ¢! orx shows that Ker(rx) is
finite; hence kx is an isogeny. Furthermore,

rank (K (L)) = deg(pr) = deg(¢}) - deg(rx) = rank(K(L)D) -deg(kx),
using (7.5). But rank(K (L)"') = rank(K (L)), so kx has degree 1. O

(7.10) Corollary. If L is a non-degenerate line bundle on X then K (L) = K (L)P.
Proof. Apply (7.5) to ¢, and use (7.8) and (7.9). O

§3. Further properties of Picg(/k.

Let X be an abelian variety over a field k. A line bundle L on X gives rise to a homo-
morphism ¢r: X — X*. We are going to extend this construction to a more general situation.
Namely, let T' be a k-scheme, and suppose L is a line bundle on X7 := X X T. We are going
to associate to L a homomorphism ¢r: X7 — X%.

As usual we write A(L) := m*L ® p{L™! @ p5L~! for the Mumford bundle on X7 X1 X7
associated to L. (Note that we are working in the relative setting, viewing 7" as the base scheme.
If we rewrite X7 x7 X7 as X X X x;, T then A(L) becomes (m xid7)*L@pis L ' @pi, L1 In
order to distinguish the two factors X, let us write X:(Fl) = Xp xre(T) and X:(FQ) =e(T)xr Xrp
where e(T") C Xp is the image of the zero section e: T' — Xp. Viewing A(L) as a family of line
bundles on X;l) parametrized by X;Q) we obtain a morphism

or: Xp = X2 — Picx, = Picxe ¥ T
As 1, (0) = 0 and the fibres X; are connected, ¢, factors through X% = Picg(/k X T.
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phiLl/TLen (7.11) Lemma. (i) The morphism ¢y, only depends on the class of L in Picx,(T').
(ii) Let f: T — S be a morphism of k-schemes. If M is a line bundle on Xg and L =
(idx x f)*M on Xr, then ¢r: Xr — X% is the morphism obtained from ppr: Xg — X& by
pulling back via f on the basis.
(iii) The morphism ¢r: Xt — X% is a homomorphism.

Part (i) of the lemma will be sharpened in (7.15) below. As a particular case of (ii), note
that the fibre of ¢y above a point ¢t € T is just ¢r,, where we write L, for the restriction of L
to X x {t}.

Proof. (i) If Ly and L have the same class then they differ by a factor pri.M. But then A(L;)
and A(Ls) differ by a factor 7 M ~1, where m: X7 x7 X7 — T is the structural morphism. This
implies that ¢, = ¢r,, as claimed.

(ii) This readily follows from the definitions.

(iii) The assertion that ¢y is a homomorphism means that we have an equality of two
morphisms

orem =mo(op X pr): Xp xp Xp — X5

For every t € T' we already know that the two morphisms agree on the fibres above t. Hence
the lemma is true if T is reduced. In particular, the lemma is true in the “universal” case that
T = Picx/; and L is the Poincaré bundle on X Xy, Picx/,. In the general case, consider the
morphism f: T' — Picx/, associated to the line bundle L. This morphism is characterized by the
property that L and (id x f)*” have the same class in Picx/(T"). Now apply (i) and (ii). O

In the above we allow L—to be thought of as a family of line bundles on X parametrized
by T—to be non-constant. But the abelian variety we work on is a constant one. We can go
one step further by also letting the abelian varieties X; “vary with ¢t”. This generalization will
be discussed in Chapter ?7; see in particular (?.7).

We write K (L) := Ker(pr) C Xp. It is the maximal subscheme of X1 over which A(L) is
trivial, viewing X7 X7 X7 as a scheme over X via the second projection. In particular, ¢ =0
if and only if A(L) is trivial over X, meaning that A(L) = prj M for some line bundle M on Xr.
Using (2.17) we can make this a little more precise.

phiLtriv (7.12) Lemma. Let T be a locally noetherian k-scheme. Write w: Xp X7 X7 — T for the

structural morphism. For a line bundle L on X, consider the following conditions.

(a) oL = 0.

(b) A(L) = priM for some line bundle M on Xr.

(¢c) A(L) =2 n*N for some line bundle N on T'.

(d) ¢, =0 for somet € T.
Then (a) < (b) < (¢) = (d), and if T is connected then all four conditions are equivalent. If
these equivalent conditions are satisfied then N = e*L~! and M = pr}.N.

Proof. The implications (d) <= (a) < (b) < (c) are clear. Let us write Xo X7 X7 as X X, X x;T.
In this notation we have A(L) = (m x id7)*L ®@ pj3 L~ @ p33 L~ and 7 becomes the projection
onto the third factor. Set N := e*L~!. We find that

A(L) oy xxxT ZprpN = A(L)|x x {0y xT
as line bundles on X x T
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Suppose T is connected and ¢y, = 0 for some ¢t € T'. Then

A(L)\XxXx{t} = OX><X><{t}

by (iii) of (2.17). By Thm. (2.5) the line bundle A(L) ® pN~1 on X x X x T is trivial, i.e.,
A(L) = 7*N. This shows that (d) = (a) for connected 7. For arbitrary 7" we get the implication
(a) = (c) by applying the previous to each of its connected components.

The last assertion of the lemma is obtained by restricting A(L) to {0} x {0} x T" and to

{0} x X xT. O
(7.13) Fact. Let X and Y be two projective varieties over a field k. Then the contravariant
functor

Homsen(X,Y): (Sch)i) — Sets  given by T + Homsen,,. (X7, Y1)
is representable by a k-scheme, locally of finite type.

This fact is a consequence of the theory of Hilbert schemes. A reference is 77. Note that in
this proof the projectivity of X and Y is used in an essential way. See also Matsumura-Oort [1]
for related results for non-projective varieties.

(7.14) Proposition. Let X and Y be two abelian varieties over a field k. Then the functor
Hompay(X,Y): (Sch/,) — Ab  given by T +— Homgsch,, (X1, YT)

is representable by an étale commutative k-group scheme.

Proof. Let H = Homsen(X,Y) and H' = Homsen (X x X,Y). Let f: Xg — Yg be the universal
morphism. Consider the morphism g: (X x X)g — Yg given on points by g(z1,22) = f(x1 +
x9) — f(z1) — f(x2). Consider also the “trivial” morphism e: (X x X)y — Yy given on points
by e(x1,22) = ey. Then g and e are H-valued points of H'; in other words, they correspond to
morphisms vy, ¥.: H — H'. The functor Homay(X,Y") is represented by the subscheme of H
given by the condition that 1, = 9).; in other words, it is given by the cartesian diagram

HomAV(X, Y) — Hl

| Jou

H (wnge) H/ Xk H/

To get a group scheme structure on Homay(X,Y') we just note that Homay(X,Y) is natu-
rally a group functor; now apply (3.6).

It remains to be shown that Homay(X,Y') is an étale group scheme. We already know it is
locally of finite type over k, so it suffices to show that its tangent space at the origin is trivial.
It suffices to prove this in the special case that Y = X, for Homay(X,Y) embeds as a closed
subgroup scheme of &nday(X X Y) := Homay(X X Y, X x Y) by sending f: X — Y to the
endomorphism (z,y) — (0, f(z)) of X x Y.

A tangent vector of &nday(X) at the point idx is the same as a homomorphism &: Xj o —
Xk[e] over Spec(k[s]) that reduces to the identity modulo €. Note that & is necessarily an
automorphism. (It is the identity on underlying topological spaces, and it is an easy exercise to
show that & gives an automorphism of the structure sheaf.) Hence by the results in Exercise (1.2),
& corresponds to a global vector field Z on X. As we know, the global vector fields on X are
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precisely the translation-invariant vector fields. On the other hand, a necessary condition for &
to be an endomorphism is that it maps the identity section of Xy to itself. This just means

that Z(ex) = 0. Hence = is the trivial vector field. This shows that idx has non non-trivial
first order deformations. 0

In line with the notational conventions introduced in (1.17), we shall usually simply write
Hom(X,Y) for the group scheme of homomorphisms from X to Y. If we wish to refer to the
bigger scheme of arbitrary scheme morphisms from X to Y, or if there is a risk of confusion, we
shall use a subscript “AV” or “Sch” to indicate which of the two we mean.

By (i) and (ii) of Lemma (7.11), L + ¢, gives rise to a morphism of functors ¢: Picx/, —
Hom(X,X?"). If L and M are line bundles on Xt then A(L ® M) = A(L) ® A(M) and we find
that orem = ¢ + @ar. Summing up, we obtain a homomorphism of k-group schemes

¢: Picx/, — Hom(X, X").

(7.15) Lemma. Let T be a connected k-scheme. Let L be a line bundle on Xr. Write L,
for Lxxty. Then for any two k-valued points s, t € T'(k) we have ¢, = ¢r,. In particular,
Picg(/k C Ker(yp).

Proof. By (d) = (a) of (7.12), applied with 7' = X* and with L = & the Poincaré bundle, we
find that X* = Pic% /i C Ker(p). As ¢ is a homomorphism, it is constant on the connected
components of Picy .

Let f: T' — Picx/, be the morphism corresponding to L; it factors through some connected
component C' C Picy ;. Let M := & x ¢ be the restriction of the Poincaré bundle to X x C.
Using (i) and (ii) of (7.11) we find that ¢r: X7 — Xk is obtained from ¢y Xo — X§& by
pulling back via f on the basis. But by the above, o, = ¥y, - 0

(7.16) Lemma. Let X be an abelian variety over k. Let T' be a k-scheme and let L be a line
bundle on Xt such that ¢ = 0.

(i) If Y is a T-scheme then for any two morphisms f, g: Y — Xp of schemes over T we
have [(f + g)*L] = [f*L ® g*L] in Picy,r(T).

(ii) For n € Z we have [n*L] = [L"] in Picx /4 (T).
Proof. If @1, = 0 then A(L) = 7*N for some line bundle N on 7. Pulling back via (f,g): ¥ —
Xp xp Xp gives (f +9)*L = f*L® ¢*L @ 7*N, where m: Y — T is the structural morphism.
But 7* N is trivial in Picy,7(T'), so we get (i). Applying this with f =idx, and g = nx, gives
the relation [(n 4+ 1)*L] = [L ® n*L]. By double induction on n, starting with the cases n = 0
and n = 1, we obtain (ii). O

Using that Pic% /& C Ker(p) we obtain a positive answer to the questions posed in (6.20).
(7.17) Corollary. Let X and Y be abelian varieties over k. Then the map Hom(X,Y) —

Hom(Y*t, X') given on points by f — f* is a homomorphism of k-group schemes. For alln € Z
we have (nx)' = nxe.

Combining this last result with (7.5) we find that X*[n] is canonically isomorphic to the
Cartier dual of X|[n], for every n € Z~.

(7.18) Let X be an abelian variety. We call a homomorphism f: X — X! symmetric if f = f¢,
taking the isomorphism ky: X — X' of (7.9) as an identification. It follows from the previous
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corollary that the functor of symmetric homomorphisms X — X! is represented by a closed
subgroup scheme
Hom™™ (X, X") C Hom(X, X*").

In fact, Hom™™ (X, X") is just the kernel of the endomorphism of Hom(X, X"!) given by f
f=r.

By Lemma (7.8), the homomorphism ¢: Picx/, — Hom(X,X") factors through the sub-
group Hom™™ (X, X"). (Because Hom(X,X") is étale, it suffices to know that ¢ maps into
Hom™™ for points with values in a field.)

Our next goal is to show that not only Pic% /i C Ker(p) but that the two are in fact equal.
First we prove a lemma about the cohomology of line bundles L with ¢; = 0. Note that we are
here again working over a field; this lemma has no straightforward generalization to the relative
setting.

(7.19) Lemma. Let L be a line bundle on X with ¢;, = 0. If L % Ox then H'(X,L) = 0 for
all 1.

Proof. First we treat the group H°(X,L). If there is a non-trivial section s then (—1)*s is a
non-trivial section of (—1)*L = L~1; so both L and L~! have a non-trivial section, and this
implies that L is trivial. Since we have assumed this is not the case, H°(X, L) = {0}.
Let now i > 1 be the smallest positive integer such that H(X,L) # 0. Consider the
composition
X - XxX™ X, given by 2 (2,0) — .

On cohomology this induces the maps

HY(X,L) - H(X x X,m*L) — H'(X,L),

~Y

the composition of which is the identity. But since m*L = piL ® p5L, the Kiinneth formula
gives
HY(X x X,m"L) = H'(X x X,piL@p;L)= Y  HX,L)® H'(X,L).
a+b=1
Since H°(X, L) = {0} we may consider only those terms in the RHS where @ > 1 and b > 1.
But then a < 7 which by our choice of ¢ implies that H*(X, L) = 0. This shows that the identity
map on H'(X, L) factors via zero. O

In the proof of the next proposition we need some facts about cohomology and base change.
Here is what we need.

(7.20) Fact. Let f: X — Y be a proper morphism of noetherian schemes, with Y reduced and
connected. Let F' be a coherent sheaf of Ox-modules on X.
(i) Ify — dimy,) H1(X,, F,) is a constant function on Y then R?f,(F) is a locally free sheaf
onY, and for all y € Y the natural map Rf,(F) ®o, k(y) — HY(X,, Fy) is an isomorphism.
(ii) If R1f(F) =0 for all ¢ > qo then HY(X,,F,) =0 for ally € Y and q > qo.

A proof of this result can be found in [MAV], § 5.

(7.21) Proposition. Let X be an abelian variety over an algebraically closed field k. Let L
be an ample line bundle on X and M a line bundle with ¢y = 0. Then there exists a point
x e X(k) with M 2t L® L%
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Proof. We follow Mumford’s beautiful proof. The idea is to look at the cohomology on X x X
of the line bundle
K:=AL)®@psM~".

The projections p1,p2: X x X — X give rise to two Leray spectral sequences

EYY = HP(X,Rip; «(K)) = HPT(X x X, K)
and
EP? = HP(X,Rpy .(K)) = H""(X x X,K).

The restrictions of K to the horizontal and vertical fibres are given by

Kixx 2HLQL @M,
K|X><{:v} =t L QL7L.

Assume that there is no 2 € X (k) such that L& L~! = M. Tt then follows that K|, x is
a non-trivial bundle in Ker(p) for every . (Note that [tL® L™ = ¢ (x) € Picqu C Ker(p).)
By Lemma (7.19) and (7.20) this gives R%p; .(K) = (0) for all ¢, and from the first spectral
sequence we find that H™"(X x X, K) = 0 for all n.

Now use the second spectral sequence. For x ¢ K(L) the bundle 3L ® L~ is a non-trivial
bundle in Ker(y). Again by Lemma (7.15) we find that supp(R%ps «K) C K(L). Since K (L) is
a finite subscheme of X (the bundle L being ample) we find

D Rips.(K), ifp=0;
EP = {a:EK(L)
0 otherwise.

As we only have non-zero terms for p = 0, the spectral sequence degenerates at level E}. This
gives H"(X x X, K) = @per(n)R"p2,«(K)z.

Comparing the two answers for H"(X x X, K) we find that R"py .(K) = 0 for all n. By
(7.20) this implies that H™(X, K|xx{z}) = 0 for all z. But K|xgo} is the trivial bundle, so
taking n = 0 and x = 0 gives a contradiction. 0

(7.22) Corollary. Let X be an abelian variety over a field k. Then Picqu = Ker (<p: Picx, —
Hom (X, X")).

Proof. We already know that Ker(p) is a subgroup scheme of Picx/, that contains Picg(/k.
Hence Ker(¢p) is the union of a number of connected components of Picx ;. By the proposition,
every k-valued point of Ker(y) lies in Pic®. The claim follows. O

(7.23) Corollary. Let X be an abelian variety over a field k. Let L be a line bundle on X.
(i) If [L"] € Picg(/k for some n # 0 then [L] € Picg(/k. In particular, if L has finite order,
ie., L™ = Ox for some n € Z>, then [L] € Picg(/k.
(ii) We have [L ® (=1)*L™'] € Pick ;.
(iii) We have

[L] € Pick ), <= n*L=L" foralln€Z
<= n*L=L" for somene€Z\{0,1}.
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Proof. (i) Since ¢ is a homomorphism we have ¢ (z) = n-¢r(x) = ¢r(n - z). Hence if
[L™] € Pic’(X) then ¢ is trivial on all points in the image of nx. But nyx is surjective, so ¢,
is trivial.

(ii) Direct computation shows that ¢(_qy«1(z) = —¢r(z) for all L and z. Since also
or-1(z) = —pr(z), we find that [L @ (—1)*L~71] € Ker(p).

(iii) The first implication “=" was proven in (7.16) above; the second is trivial. Suppose that
n*L = L™ for some n ¢ {0,1}. Since n*L = L"®[L® (—1)*L]" ~™/2 it follows that L& (—1)*L
has finite order, hence its class lies in Picg(/k. By (ii) we also have [L ® (=1)*L™1] € Picqu.
Hence [L?] € Picqu and by (i) then also [L] € Picg(/k. O

(7.24) In (3.29) we have associated to any group scheme G locally of finite type over a field k
an étale group scheme of connected components, denoted by wy(G). We now apply this with
G = Picx/y, for X/k an abelian variety. The associated component group scheme

NSX/k = wo(PicX/k)

is called the Néron-Severi group scheme of X over k. The natural homomorphism ¢: Picx/, —
NSx /i realizes NSy, as the fppf quotient of Picx/, modulo Picg( /i hence we could also write

We refer to the group

as the Néron-Severi group of X. Note that NS(X) equals the subgroup of Gal(k,/k)-invariants

We say that two line bundles L and M are algebraically equivalent, notation L ~g, M, if
[L] and [M] have the same image in NS(X'). As NS(X) naturally injects into NS(X7), algebraic
equivalence of line bundles (or divisors) can be tested over k, and there it coincides with the
notion defined in Remark (6.9). Hence we can think of the Néron-Severi group scheme as being
given by the classical, geometric Néron-Severi group NS(Xy,) = NS(X7) of line bundles (or
divisors) modulo algebraic equivalence, together with its natural action of Gal(ks/k). Note,
however, that a k-rational class £ € NS(X) may not always be representable by a line bundle
on X over the ground field k.

Let us rephrase some of the results that we have obtained in terms of the Néron-Severi
group.

(7.25) Corollary. The Néron-Severi group NS(X) is torsion-free. If n € Z and L is a line
bundle on X then n*L is algebraically equivalent to L™ ; in other words, n*: NS(X) — NS(X)
is multiplication by n?.

Proof. The first assertion is just (i) of Corollary (7.23). The second assertion follows from (ii)
of that Corollary together with Corollary (2.12). O

NSHomSymm (7.26) Corollary (7.22) can be restated by saying that the natural homomorphism ¢: Picy,; —

Hom™™ (X, X") C Hom(X, X") factors as
Picy /5 — NSx /4 — Hom™™ (X, X")
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for some injective homomorphism ¢: NSy, — Hom™™ (X, X"). This says that the homomor-
phism ¢ associated to a line bundle L only depends on the algebraic equivalence class of L,
and that ¢, = @ only if L ~y, M. We shall later show that ¢ is actually an isomorphism;
see Corollary (11.3).

84. Applications to cohomology.

(7.27) Proposition. Let X be an abelian variety with dim(X) = g. Cup-product gives an
isomorphism A*H'(X,0x) — H*(X,0x). For every p and q we have a natural isomorphism
HI(X,0% ) = (ANTxt0) @ (A\PTY o). The Hodge numbers h?4 = dim HI(X, Q% ) are given

X/k X/k
b 0= ()2).
Proof. Use (6.13) and the isomorphisms Q’;(/k = (NPT ) @1 Ox. O

(7.28) Corollary. Multiplication by an integer n on X induces multiplication by mnP*¢ on
HI(X,0%).

Proof. Immediate from the fact that nx induces multiplication by n on Tx o, applied to both
X and X*. O

Before we state the next corollary, let us recall that the algebraic de Rham cohomology of
a smooth proper algebraic variety X over a field k is defined to be the hypercohomology of the
de Rham complex
. d 1 d 2 d
QX/k =(0x — QX/k - QX/k — ),

with Ox in degree zero. We have the so-called “stupid filtration” of this complex, by the
subcomplexes o>p{2% ;- given by

0fori<p

[U>pQX/k] = {le/k for 1 > p.

This gives rise to a spectral sequence
EVT = HI(X,0%) = HYEU(X k)

called the “Hodge-de Rham” spectral sequence.

If £ has characteristic zero then it follows from Hodge theory that this spectral sequence
degenerates at the Ej-level, see Deligne [1], section 5. If k has characteristic p > 0 then this is
no longer true in general. For examples and further results we refer to Deligne-Illusie [1] and
Oesterlé [1].

As we shall now show, for abelian varieties the degeneration of the Hodge-de Rham spectral
sequence at level F; follows from (6.12) without any restrictions on the field k.

(7.29) Corollary. Let X be an abelian variety over a field k. Then the “Hodge-de Rham”
spectral sequence of X degenerates at level Ej.

Proof. We follow the proof given by Oda [1]. We have to show that the differentials d,.: EP*9 —
Eptra=r+1 are zero for all » > 1. By induction we may assume that this holds at all levels < r.
(The empty assumption if r = 1.)
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Write Ef(X) = @EP1, graded by total degree. Cup-product makes E*(X) into a connected,
graded-commutative k-algebra. By our induction assumption and the Kiinneth formula there is

a canonical isomorphism
E(X xX)2E(X)®, EXN(X).

Write pu: EX(X) — Ef(X) ®, Ef(X) for the map induced by the multiplication law on X, and
write e: Ef(X) — EY(X) = k for the projection onto the degree zero component. One checks
that p and e give E*(X) the structure of a graded bialgebra over k.

Let ¢ = dim(X). By what was shown above, E}(X) = H!(X,0x) ® H°(X, Qk/k) has
dimension 2g. Also, E%(X) = 0 for i > 2g. The Borel-Hopf structure theorem (6.12) then gives

EX(X) =2 AN*ENX).

Since d, is compatible with the product structure (cup-product) on E}(X), it suffices to
show that d,. is zero on E}(X), which is just the space of primitive elements of E*(X). (See
6.17.) By functoriality of the Hodge-de Rham spectral sequence we have pod, = (d, @ d,.) o p.
Therefore, for ¢ € E}(X) we have u(d,(€)) = d, () ® 1 + 1 ® d,.(¢). This shows that d,.(£) is
again a primitive element. But d,.(§) € E?(X) which, by (6.17), contains no non-zero primitive
elements. This shows that d, = 0. ]

(7.30) Corollary. There is an exact sequence
0 — Fil' Hig(X/k) — Hig(X/k) — H*(X,0x) — 0,

where Fil' Hip (X/k) := H(X, Q% ) = TY -

To close this section let us fulfil an earlier promise and give an example of a smooth projec-
tive variety with non-reduced Picard scheme. We refer to Katsura-Ueno [1] for similar examples.

(7.31) Example. Let k be an algebraically closed field of characteristic 3. Let E; be the elliptic
curve over k given by the Weierstrass equation y? = 23 — x. From (5.27) we know that E; is
supersingular. Let o be the automorphism of E; given by (z,y) — (z + 1,y). Then o has
order 3, so that we get an action of G := Z/37Z on E;. The quotient of F; by G is isomorphic
to ]P’,lg; in affine coordinates te quotient map is just (x,y) — y.

Let E5 be an ordinary elliptic curve over k. Let 7 be the translation over a point of (exact)
order 3 on Fy. Then (o, 7) is an automorphism of order 3 of the abelian surface X := E; X F5; this
gives a strictly free action of G := Z/3Z on X, and we can form the quotient m: X — Y := G\ X.
By (??) m is an étale morphism, so Y is again a non-singular algebraic surface. We have a
natural morphism Y — (G\E;) = P!; this exhibits Y as an elliptic surface over P!. In fact, for
all P € P!(k) with P # oo the fibre Yp above P is isomorphic to Es.

We compute h!(Y, Oy ) using Hirzebruch-Riemann-Roch and Chern numbers for algebraic
surfaces. (A reference is 77.) The Euler number cs of Y is a multiple of the Euler number of X,
and this is 0. By the Hirzebruch-Riemann-Roch formula we have

1- hl(Y7 OY) + hQ(K OY) = (C% +62)/]‘2 = 07

since ¢§ = 0 for every elliptic surface. By Serre duality, h?(Y, Oy ) = h%(Y, Q3 /i)- Now we use
that HO(Y, Q%,/k) is isomorphic to the space of G-invariants in H%(X, Q%(/k)' If w; is a basis for
HO(Ei,Q}EZ_/k) then w; A wy is a basis for HO(X, Q%c/k) But w; is a multiple of dy, which is
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invariant under o, and ws is translation invariant, in particular invariant under 7. In sum, we
find that h?(Y,Oy) =1 and h'(Y,Oy) = 2.

On the other hand, 7: X — Y induces a homomorphism 7*: Picg//k — Xt = Picg{/k. The
same arguments as in the proof of Theorem (7.5) show that Ker(7*) = ps. On the other hand,
7* factors via the subscheme of G-invariants in X*. (See Exercise 7?7 for the existence of such
a subscheme of G-invariants.) The point here is that we are describing line bundles on Y as
coming from line bundles L on X together with an action of G. But such an action is given by
an isomorphism p*L — pr’ L of line bundles on G x, X. The existence of such an isomorphism
says precisely that L corresponds to a G-invariant point of X*.

By Exercises ?? and ??, X! = X. The induced action of G on X! is given by the
automorphism (o,id). (Cf. Exercise ??) Therefore, the subscheme of G-invariants in X? is
Ef‘ﬂ X Fs. The only geometric point of E; fixed under o is the origin. A computation in local
coordinates reveals that Ei‘ﬂ is in fact the Frobenius kernel E;[F| C E; which can be shown to
be isomorphic to ag. In any case, we find that Picg//k is 1-dimensional, whereas we have shown
its tangent space at the identity, isomorphic to H!(Y, Oy ), to be 2-dimensional. Hence Picg//k
is non-reduced.

§5. The duality between Frobenius and Verschiebung.

(7.32) Let S be a scheme of characteristic p. Recall that for any S-scheme ax: X — S we have
a commutative diagram with Cartesian square

X
x/s) Mxs ooy
e s
S Frobg S

If there is no risk of confusion we simply write X® for X®/9  Note that if ap: T — S
is an S-scheme then we have aroFroby = Frobgoar and this gives a natural identification
(X7)P/T) = (X®/5)) 1. We denote this scheme simply by X:(Fp).

Let us write T, for the scheme T' viewed as an S-scheme via the morphism ar, :=
Frobgear = apoFrobp: T'— S. The morphism Frobr: T — T is not, in general, a morphism
of S-schemes, but if we view it as a morphism 7,y — T' then it is a morphism over S. To avoid
confusion, let us write Frp: T,y — T for the morphism of S-schemes given by Frobr.

Let Y be an S-scheme. Recall that we write Y (T') for the T-valued points of Y. It is
understood here (though not expressed in the notation) that all schemes and morphisms of
schemes are over a fixed base scheme S; so Y (7T') is the set of morphisms 7' — Y over S. There
is a natural bijection

wyr: YPUT) 5 Y (T,

sending a point n: T — Y ®) to Wy g emn, which is a T{,-valued point of Y. The composition
wy,roFy;s(T): Y(T) — Y(T(y))
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is the map that sends y € Y/(T') to yoFrp: T(,y — Y, which is the same as yoFroby: T — Y
viewed as a morphism T{,) — Y.

(7.33) Consider an abelian variety X over a field k of characteristic p. Take S := Spec(k). If
T is any S-scheme then X Xg T(;) is the same as X ®) x ¢ T, and we find that

Picl?), (T) —— Picx/u(T(y) =

WPicy /5, T

isomorphism classes of rigidified
{line bundles (L,a) on X Xg T(p)}
{isomorphism classes of rigidified

= Picyw .
line bundles (L, «) on X® xq T} g >/S( )

(p)
X/
Applying (7.32) with Y = Picx/, we find that the relative Frobenius of Picx/, over k is the

In this way we obtain an isomorphism Pic = Picy o) /s, which we take as an identification.

homomorphism that sends a point y € Picx /4 (T") to yoFroby, viewed as a morphism T(,) —
Picx . Because the diagram

w
xw T Xy
s
T Frobr T

is Cartesian this just means that Fpjc/x: Picx/p — Picx )/, sends the class of a rigidified line
bundle (L,«) on Xr to the class of (L(p),a(p)) on X:(Fp), where L®) .= W)*cT/TL? and where

aP): Op = e*L(P) = Frobi(e*L) is the rigidification of L) along the zero section obtained by
pulling back « via Froby.

(7.34) Proposition. Let X be an abelian variety over a field k of characteristic p. We identify
(XH)®) = (X))t as in (7.33), and we denote this abelian variety by X%®). Then we have the
identities

F;(/k = VXt/k: Xt,(in) — Xt and V)t(/k — FXt/k: Xt Xt,(p) )

Proof. It suffices to prove that F?% e X ! — X' equals [p]x¢, because if this holds then
together with Proposition (5.20) and the fact that Fx:/, is an isogeny it follows that Fff/k =
Vxt /. The other assertion follows by duality.

Let T be a k-scheme. Consider a rigidified line bundle (L, «) on X that gives a point
of X*(T). As explained in (7.33) Fx:/ sends (L,a) to (L), aP) with L®) = Wi L.
Because W7 Fx, )7 = Frobx,, pull-back via F_ ., gives the line bundle Frob}TL on Xr.
But if Y is any scheme of characteristic p and M is a line bundle on Y then Froby (M) = MP; this
follows for instance by taking a trivialization of M and remarking that Froby raises all transition
functions to the power p. The rigidification we have on Fy /TW)*(T /TL = Froby, L = L? is the
isomorphism

Or = Froby0r — ex, Fx, oWy, rL = 6;;,,) W, L = Frobrex, L = (X, L)’

that is obtained from a by pulling back via Frobs, which just means it is o”. In sum, F% Jk° Fxt
sends (L, ) to (LP,aP), which is what we wanted to prove. O

- 111 —



Ex:mtdiagt

Ex:Ln=0X

Ex:L=L1L2

Ex:(m,n)P

Ex:phiP

Ex:transldual

Ex:AVQuotDual

Ex:Lsqtens

Exercises.

(7.1) Let X be an abelian variety. Let mx: X x X — X be the group law, and let Ax: X —
X x X be the diagonal morphism. Show that (mx)’ = Aye: X! x Xt — X! and that (Ax)! =
mxe: Xt x Xt — Xt

(7.2) Let L be a line bundle on an abelian variety X.

(i) Show that, for n € Z,
nL=20x <<= L"=0x.

(ii) Show that, for n € Z \ {—1,0,1},

L2 <— L["'>0x.

(7.3) Let X be an abelian variety over an algebraically closed field k. Show that every line
bundle L on X can be written as L = Ly ® Lo, where L; is symmetric and [Lo] € Picg(/k. [Hint:
By (7.23), the class of the line bundle (—1)*L ® L1 is in Picg(/k. As Pic? is an abelian variety
and k = k, there exists a line bundle M on X with [M] € Pic” and M? = (—1)*L ® L™'. Now
show that L ® M is symmetric.]

(7.4) Let £ be the Poincaré bundle on X x X*. For m, n € Z, consider the endomorphism
(m,n) of X x X*. Show that (m,n)* 2 = ™",

(7.5) Let £ be the Poincaré bundle on X x X'. Show that the associated homomorphism
e X x X' — X' x X" is the homomorphism given by ¢ »(z,£) = (£, kx(z)). [Hint: Compute
the restrictions of t(x,£)* % ® 27! to X x {0} and {0} x X' ]

(7.6) If 7 is a translation on an abelian variety, then what is the induced automorphism ¢ of
the dual abelian variety?

(7.7) Let X be an abelian variety over a field k. Let i: Y < X be an abelian subvariety. Write
q: X — Z := X/Y for the fppf quotient morphism, which exists by Thm. (4.38). Note that Z
is an abelian variety; see Example (4.40).

(i) Show that for any k-scheme T" we have ¢.(Ox,) = Oz,

(ii) Prove that ¢': Z* — X' is injective and gives an isomorphism between Z* and Ker(i': X* —

)/t)gcd'

(7.8) Let L be a line bundle on an abelian variety X. For a symmetric m x m-matrix S with
integer coefficients s;; we define a line bundle L% on X™ by

195 = (B piL) @ (o piAL)).
1= t<gsm

If a = (aij) is an integer valued matrix of size m X n we define a homomorphism of abelian
varieties [a]x: X" — X™ by a(z1,...,2n) = (Y1,- .., Ym) With y; = 2?21 ai;%;.

(i) Prove that [a]% (L®9) is algebraically equivalent to [R(aSa),

(ii) Assume that L is a symmetric line bundle. Prove that [a]} (L¥%) = [B(aSa),

Notes. (nog aanvullen)
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Chapter VIII. The Theta group of a line bundle.

To a line bundle L on an abelian variety X we shall associate a group scheme, the theta group
& (L) of L. If the class of L is in Pic% sk = X' then 9 (L) is an extension of X by the multiplicative
group G,, and is commutative. If [L] ¢ Pic% /i then ¢(L) is much smaller and in general not
commutative. The theta group is a convenient tool for studying when a line bundle descends
over an isogeny. Further we study the structure of so-called non-degenerate theta groups, and
their representations.

§1. The theta group 4 (L).

(8.1) Let X be an abelian variety over a field k. Let L be a line bundle on X. Write L = V(L")
for the corresponding geometric line bundle over X.

For a k-scheme T define 4 (L)(T') to be the set of pairs (x,¢) where x € X (T') and where
¢: Ly — t: L is an isomorphism. Geometrically this means that we have ¢p: Ly = Lo,
fibrewise linear, fitting in a commutative diagram

Ly = Lp

Lo

)Qr 779 )QT.
Note that = is uniquely determined by ¢, so that ¢ (L)(7") is in natural bijection with the set of
oL: Ly = L7 lying over a translation on X7.

The set ¢(L)(T) carries a natural group structure, with multiplication given by (z1, 1) -
(w2, p2) = (w1 + 2,1}, p1°02). Since the association T+ ¥ (L)(T) is functorial in T' we obtain
a group functor ¢¥(L): (Sch/;)? — Gr.

The (fibrewise linear) automorphisms of Ly lying over the identity on Xp are just the
multiplications by elements of I'( X7, Ox,.)* = I'(T',Or)*. This gives an identification of G, j
with the kernel of the natural homomorphism (of group functors) ¢4(L) — K(L) C X. Notice
that Gy, is central in ¢ (L).

(8.2) Lemma. The group functor 4 (L) is representable. There is an exact sequence of group
schemes

0— Gpnr—¥Y(L) — K(L) —0, (1)
where the map ¢ (L) — K (L) is given on points by (x, ) — x.

Proof. Since the functor K (L) is representable, it suffices to show that the homomorphism
m: 9 (L) — K(L) is (relatively) representable by a G,,-torsor. So, let T' be a k-scheme and
x € K(L)(T). Write

M = per,*(L}1 ®tyLr),

ThetaGr, 8 februari, 2012 (635)
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which is a line bundle on 7. If 7" is a T-scheme then the ¢: Ly — L7/ such that (x,¢) €
& (L)(T") are precisely the nowhere vanishing sections of M. Thus, writing M* for the G, r-
torsor corresponding to M (i.e., the T-scheme obtained from the geometric line bundle M :=
V(M) by removing the zero section), we find that the fibre 7~1(x) is representable by the
T-scheme M*. That the sequence (1) is exact (even as a sequence of Zariski sheaves on Sch ;)
is clear from the remarks preceding the lemma and the definition of K (L). O

(8.3) We indicate another proof of (8.2). For this, consider the G,,-torsor L* over X associated
to L. Write £: L* — X for the structure morphism. Let Y = ¢~}(K (L)) = K(L) xx L*, the
scheme obtained by pulling back IL* via the inclusion map K (L) <— X. Choose a k-rational point
P € L*(0). (This gives a trivialization L*(0) = G, x.) We obtain a morphism rp: ¢(L) — Y by
sending a point (z,¢) € 4(L)(T) to the image point ¢, (P) € Y(T) C L*(T). It is not difficult
to see that rp gives an isomorphism of (set-valued) functors. So ¢(L) is represented by the
scheme Y = ¢~ Y(K(L)).

(8.4) Definition. Let L be a line bundle on an abelian variety. The group scheme ¥(L) is
called the theta group of L.

(8.5) Consider the morphism [, |: 9(L)x¥ (L) — ¥(L) given on points by (g1, 92) — [g1, 92] =
919297 Y95 " Since K (L) is commutative this morphism factors through G,, C 4(L). The fact
that Gm is central in ¢ (L) then implies that |, ] factors modulo G,, x G,,. We thus obtain a
pairing

el K(L) x K(L) — G,,,

called the commutator pairing of the theta group. Note that e’ is alternating, meaning that
el'(x,2) =1 for every x € K(L). For fixed x € K(L)(T) the morphisms K(L)7 — Gy, r given
by y +— el(z,y) resp. y — e®(y,z) are homomorphisms. In sum we find that the theta group

(L) gives rise to an alternating bilinear form e”.

The alternating form e’ has the following properties.

(8.6) Proposition. (i) If f: X — Y is a homomorphism of abelian varieties and L is a line
bundle on Y then

D = elo(f ) on fUK(L) x fTUE(L)).

(ii) If L and M are line bund]es on X then el®M =l .eM on K(L)N K(M).
(iii) If[L] € Pch/k then el = 1.
(iv) For x € K(L) and y € ny (K (L)) = K(L") we have " (z,y) = e’ (z,ny).

Proof. (i) Note that f~Y(K(L)) C K(f*L), for if x € X then

EF L= F (L) (2)

Now suppose T is a k-scheme and xq,22 € f~1(K(L))(T). We can cover T by Zariski-open
subsets U such that there exist automorphisms ¢ 1, and @91, of the geometric line bundle Ly,
lying over the translations Zy(,,) and ty(,,), respectively. As it suffices to show that el (L) =
elo(f, f) on [f~HK(L)) x f~YHK(L))](U) for every such U, we may replace T by U.

By construction, the automorphism |11, 21| of L is the (fibrewise) multiplication by
el (f(z1), f(z2)). Then f*@1 1 and f*pqoy, are automorphisms of f*IL which, by formula (2), lie
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over the translations t,, resp. t;, on X. Since clearly [f*p1L, f*p2.L] = f*[¢1,L, p2,L], we find
that e/ (1) (21, 25) = eX(f (1), fx2)).

(ii) If we have elements (y1,2), (p2,y) € Y(L)(T) and (¢1,z), (Y2,y) € Y(M)(T) then
(P1L @ Y1m) o (P2, @am) = (P1,Lop21L) ® (Y1 mo2m) as (fibrewise linear) automorphisms of
L ® M. The claim readily follows from this.

(iii) If the class of L is in Pic’ then K(L) = X, and since X is complete the pairing
el: X x X — G,, must be constant.

(iv) For n > 0 this follows by induction from (ii) and the bilinearity of the pairing el. The
case n < 0 then follows from (ii) and (iii). O

Let k be a field. As we have seen in (4.41), the category C of commutative group schemes
of finite type over k is abelian. In particular, given objects A and B of C we can form the
groups Extg (A, B) of n-extensions of A by B. If there is no risk of confusion we shall simply
write Ext(A, B) for Extg (A, B). Thus, the elements of Ext(A, B) are equivalence classes of
exact sequences

0—B—F—A—0

where F is again an object of C.

It can be shown (but this requires some work) that C does not contain any injective or
projective objects. In particular, the computation of Ext-groups by homological methods cannot
be done “directly” in C'. To repair this, one may work in an Ind- or Pro-category, cf. 77 and 77.

We shall further discuss extensions of group schemes in Chapter 77. In this chapter we only
need the following two facts.

(8.7) Fact. Let k be an algebraically closed field.

(i) Write C for the category of commutative group schemes of finite type over k. If G is a
finite commutative k-group scheme then Exts (G, G,,) = 0. In other words, for every extension
0 — Gpir — 9% — G — 0 with 9 commutative, there exists a section s: G — ¢ which is a
homomorphism of group schemes.

(ii) Let G be a finite k-group scheme of prime order. If 0 — G, — ¥ — G — 0 is an
exact sequence of k-group schemes then ¢ is commutative.

(8.8) We shall use the notion of a theta group to obtain an interpretation of X* = Pic%k /i 83
being Exte (X, G,,), where C' is the category of commutative k-group schemes of finite type.

In one direction this is quite easy. Namely, suppose that L is a line bundle on X which
gives a class in Pic’. Then K (L) = X and the pairing e’ is trivial. This means that G = % (L)
is a commutative group scheme fitting in an exact sequence

0—G, —G— X —0. (3)

Thus, if [L] € Picqu then ¢ (L) gives an element of Ext(X, G,,).

Conversely, suppose G is a commutative k-group scheme for which we have an exact se-
quence (3). Then G can be viewed as a G,,-torsor over X. Write Lg for the corresponding line
bundle on X. (See Appendix ??) We claim that L is a line bundle in Pic% /k With theta group
isomorphic to GG. To see this, suppose that G; and G5 are commutative k-group schemes and
that we have a commutative diagram

0 — G, 2~ ¢ ™ X — 0

vl JSO Jf
0—>ij—2>G2£>X—>O
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with exact rows. Here f is only required to be a morphism of schemes and ¢ is required to
be “fibrewise linear” (meaning that ¢(j1(c) - g) = jay(c) - p(g) for all ¢ € G,, and g € Gy.)
Then ¢ gives an isomorphism of G,,-torsors G; — f*G4, hence it induces a homomorphism
¢: Lg, = f*Lg,. Now take G; = G5 = G and let p = t, be the translation over an element
g € G. If z € X is the image of g then we obtain a pair (z, p) € ¥(Lq). Since this construction is
obviously functorial, it gives a homomorphism h: G — ¢(L¢), compatible with the projections
to X. In particular this shows that K (L¢g) = X, so that the class of L¢ is in Pic% /i Furthermore
it is clear that h is injective, and it follows that h is an isomorphism.

In sum, we can pass from line bundles L on X with [L] € Pic’ to commutative group
schemes G as in (3) and vice versa.

(8.9) Theorem. Let X be an abelian variety over a field k. Write C for the (abelian) category
of commutative group schemes of finite type over k. Associating 4 (L) to a line bundle L with
[L] € Picg(/k gives an isomorphism X' (k) —= Extg (X, G,,).

Proof. All that remains to be shown is that L = L) as line bundles on X. This follows
from the construction in (8.3), as it shows that ¢ (L) is (non-canonically) isomorphic to LL* as a
G,,-torsor. O

We shall later extend this result, obtaining an isomorphism of group schemes X!
Ext(X,G,,). The main problem here is to set up a framework in which we can define &zt(X, G,,)
correctly.

§2. Descent of line bundles over homomorphisms.

Theta groups are a useful tool in studying when a line bundle on an abelian variety descends
over an isogeny. The basic result is in fact just a reformulation of what we have seen in (7.2).

(8.10) Theorem. Let f: X — Y be a surjective homomorphism of abelian varieties. Let L
be a line bundle on X. Then there is a bijective correspondence between the M € Pic(Y) with
f*M = L and the homomorphisms Ker(f) — ¢ (L) lying over the natural inclusion Ker(f) — X.

Note that such homomorphisms Ker(f) — ¢(L) can only exist if Ker(f) € K(L) and
Ker(f) is totally isotropic for the pairing e”.

Proof. Write V; for the set of isomorphism classes of pairs (M, ) where M is a line bundle
on Y and a: f*M == L. Write V; for the set of isomorphism classes of line bundles M on Y
such that f*M = L. Using that Aut(M) = k* = Aut(L) we see that the natural map V; — V5
(forgetting «) is a bijection.

Write H = Ker(f). Then Y represents the fppf quotient of X by H. We have seen in (7.2)
that the pairs (M, ) € V; correspond to the H-actions on L compatible with the natural action
of H on X. It is an immediate translation of the definitions that such H-actions correspond to
homomorphisms H — ¢(L) lifting the inclusion H — X. O

For isogenies over an algebraically closed field this leads to a handy criterion for when a
line bundle descends. To prove it we shall make use of a result about extensions that we stated
above.
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(8.11) Corollary. Let X and Y be abelian varieties over an algebraically closed field k. Let
f: X — Y be an isogeny. Then a line bundle L on X is the pull-back of a line bundle on Y if
and only if Ker(f) is a subgroup scheme of K(L) which is totally isotropic with respect to the
pairing el

Proof. According to the preceding theorem one must check whether Ker(f) < X can be lifted
to a homomorphism Ker(f) — ¢(L). If it can then Ker(f) is a subgroup scheme of K (L) and
el is trivial when restricted to Ker(f) x Ker(f).

Conversely, if Ker(f) is a totally isotropic subgroup scheme of K (L) then we consider the
extension

0 — G,, — 7 *(Ker(f))) — Ker(f) — 0,

where m: ¢ (L) — K(L) is the projection. Since we assume Ker(f) to be totally isotropic, the
group scheme G := 7~ !(Ker(f))) is commutative. By (8.7), the extension splits, i.e., there exists
a (homomorphic) section Ker(f) — G. O

(8.12) Remarks. (i) In the “if” statement of the theorem we really need the assumption that
k = k: if k is an arbitrary field and Ker(f) is a totally isotropic subgroup scheme of K (L) then
in general L descends to a line bundle on Y only after we pass to a finite extension of k.

(ii) The condition in (8.11) that the kernel of f is finite is necessary. If K (L) is not finite (i.e.,
L is degenerate) then Y := K(L)° , is a nonzero abelian subvariety of X (assuming the ground
field is perfect), and the quotient Z = X/Y exists as an abelian variety; see Example (4.40). In
this situation L is not, in general, the pullback of a line bundle on Z, even though Y C K(L) is
totally isotropic with respect to e”. For example, if the class of L is in Picg( /i then Y = X, so
if L is non-trivial it is not a pullback from Z = {0}.

If ¢: X — Z is the quotient map then possibly after replacing the ground field by a finite
separable extension it is still true that there exists a line bundle M on Z such that L ® ¢*M !
is in Picg(/k; see Exercise (11.3) below.

(8.13) Definition. A level subgroup of the theta group ¢ (L) is a subgroup scheme H C ¢(L)
such that G,, N H = {1}, i.e., H maps isomorphically to its image H C K (L) under .

With this notion of a level subgroup we have the following corollary to the theorem.

(8.14) Corollary. Let L be a line bundle on an abelian variety X over a field k. Then there
is a bijective correspondence between the set of level subgroups H C %(L) and the set of
isomorphism classes of pairs (f, M) where f: X — Y is a surjective homomorphisms and M is

a line bundle on Y with f*M = L. If H corresponds to the pair (f, M) then Ker(f) = W(ﬁ)

Proof. Given a level subgroup H C 9(L), set H := n(H) € K (L) and write &: H = H C 9(L)
for the inverse of T The projection f: X — X/H =:Y is a surjective homomorphism and
Theorem (8.10) shows that & corresponds to a line bundle M on Y with f*M = L.

Conversely, if f: X — Y is a surjective homomorphism and M is a line bundle on Y
with f*M 2= L then the image of the corresponding homomorphism Ker(f) — ¢(L) is a level
subgroup. One now easily verifies that these two constructions give the desired bijection. O

Given a pair (f, M) as in the corollary, we can describe the theta group ¥ (M) in terms
of 4 (L) and the level subgroup H.

(8.15) Proposition. Let f: X — Y be a surjective homomorphism of abelian varieties. Let L
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be a line bundle on X and let M be a line bundle on Y with f*M = L. Write H C 4 (L) for the
level subgroup corresponding to the pair (f,M). Then f~'(K(M)) C K(L), the centralizer C
of H inside ¥(L) is given by

Cg={9e%(L)|n(9) € fTH(K(M))},
and (M) = Cg/H.

Proof. As already remarked in the proof of (8.6), we have f~'(K(M)) C K(L). Write H =
Ker(f) =n(H) C K(L). Let & H — %(L) be the homomorphism giving the canonical H-action
on L. By construction, H is the image of &. As remarked after (7.2), such an H-action on L
(compatible with the H-action on X by translations) is nothing but a descent datum on L with
respect to the morphism f.

Let T be a k-scheme and (x, ¢) € 4 (L)(T). Writey = f(x) € Y(T'). Thent¥{: H — 4 (t:L)
gives a descent datum on ¢; L. This descent datum corresponds to the line bundle ¢ M on Y, and
we have a natural identification f*(¢%M) = ¢3L. Now the isomorphism ¢: L — t%L descends
to an isomorphism v: M — tyM if and only if ¢ is equivariant with respect to the descent
data & and ¢%¢. This last condition precisely means that (x,¢) - (h,&(h)) = (h,&(R)) - (z, ) for
all (h,&(h)) € H, i.e., (x,p) € Cg. Thus we obtain a homomorphism v: Cz — %(M).

By construction, if (x, ) maps to (y,%) then f*i) = ¢ as homomorphisms from L to ¢} L.
Thus, if (z,¢) € Ker(y) then z € H = Ker(f) and ¢ = £(x): L — t* L. This means precisely
that (z,¢) € H C Cz. (Note that H is commutative, being isomorphic to H, so that H is
indeed contained in Cjp.)

Conversely, if (¢,y) € 4(M)(T), then there is an fppf cover 7" — T and an 2 € X (T") with
f(xz) =y. Then (f*¢,x) is an element of Cz(T") with v(f*¢,z) = (¢,y). Thus ~ is surjective
and 4(M) = Cp/H.

Finally, it is clear from the above that C; C {g € (L) | 7(g) € f~'(K(M))}. Conversely,
if g=(p,z) € 9(L) with f(z) € K(M) then we have shown that there exists an element of the
form (¢',z) in Cp. As Cj clearly contains the central subgroup G, C ¢4(L), it follows that
also g € Cp. O

If z is a T-valued point of K(L) for some k-scheme T then y +— eX(x,y) defines a homo-

morphism K(L)r — Gy, 7. The bilinearity of the pairing el implies that the map K (L) —
Hom (K(L), Gm) given on points by z +— e’(z, —) is a homomorphism of group schemes.

k() Cor (8.16) Corollary. In the situation of the proposition we have f~1(K(M)) = H+ = {k €
K(L) | ek (k,h) =1 for every h € H}. We have K(M) = H+/H.

Proof. 1t easily follows from the definition of e’ that Cz = {(z,¢) € 4(L) | x € H+}. With
this remark the corollary directly follows from the proposition. O

§3. Theta groups of non-degenerate line bundles.

It will be helpful to reformulate some of the notions we have encountered without reference to
line bundles.

AbstrThGr (8.17) Definition. Let & be a field. A theta-group over k is an exact sequence of k-group
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0—>Gm7ki>€¢L>K—>0

such that i(G,, ) is contained in the center of ¢ and K is commutative. The commutator
pairing e: K x K — G, of the theta group is the alternating bilinear pairing induced by
the commutator [, |: 4 x ¥4 — 4. We say that two theta groups are isomorphic if they are
isomorphic as extensions of a group scheme K by G, 1.

Suppose that we have a theta group as above such that K is finite. If T" is a k-scheme and
z € K(T) then y — e(z,y) defines a homomorphism K7 — G, r, i.e., an element of K (T).
In this way the pairing e gives a homomorphism v: K — K. The relation e(z,y) = e(y,z) "

gives that vP = v~

(8.18) Definition. A theta group ¢ as above is said to be non-degenerate if K is finite and if
v: K — KP is an isomorphism.

Notice that the non-degeneracy condition can also be expressed by saying that i(G,, ) is
the center of ¢.

As the terminology suggests, the theta group of a non-degenerate line bundle is non-
degenerate. This is a consequence of the following result.

(8.19) Proposition. Let L be a non-degenerate line bundle on an abelian variety X. If H C
K (L) is a subgroup scheme which is maximal totally isotropic with respect to the pairing e
then H = H' and rank(H)? = rank(K(L)).

Proof. Tt suffices to prove this over an algebraically closed field. Write f: X — X/H =:Y for
the projection. By (8.11) there is a line bundle M on Y with f*M = L.

We claim that K (M) = {1}. Suppose not. Then there is a subgroup scheme K’ C K (M) of
prime order. By (8.7) this K’ is totally isotropic for e™. Then (i) of (8.6) shows that f~1(K’) is
totally isotropic for el. As H C f~1(K’) this contradicts our choice of H. So indeed K (M)
{1}. Tt then follows from (8.16) that H+ = H and by (7.6) we have rank(K (L)) = rank(H )?.

O

(8.20) Corollary. If L is a non-degenerate line bundle on an abelian variety then the theta
group ¥(L) is non-degenerate.

Proof. Choose H as above. Remark that v: K(L) — K(L)P fits in a commutative diagram with
exact rows

0 — H* — K(L) — K(L)/H+ — 0

[ g K
0 — [K(L)/HP” — KW@L)P — HP — 0.

By definition of H+ the homomorphism 7 is injective. Now v = v~! so that v°: H —

[K(L)/H*]P is the map obtained by restricting v=! to H. But H = H*, so we find that
v = (7P)~! is surjective. By rank considerations it follows that v/ and 7 are isomorphisms.
Hence v is an isomorphism. O

(8.21) Heisenberg groups. We now discuss an important example of non-degenerate theta-
groups, the so-called Heisenberg groups.
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We work over a field k. Let H be a finite abelian group; we shall view it as a (constant)
k-group scheme. Write HP := Hom(H, G, ;) for its Cartier dual. (If k = k one would also refer
to HP as the character group of H.) So

H=(Z/d\Z) % --- x (Z/d,7Z), HP 2 g, o X oo X g, ks

with dy|ds|---|d,. To the pair (H, HP) we associate a Heisenberg group #; it is defined by
H =Gy x Hx HP as a k-scheme, with multiplication given by

(A z,x) - (N2, x") = ANX (@), 2 + 2, xx) - (4)
Then 47 is a theta-group: we have an exact sequence
0—>Gm7k—>¢%ﬂ—>H><HD—>O.

The commutator pairing e: (H x HP) x (H x HP) — G, is given by e((x,x), (2/,X')) =
X' (x)x(x')~1. As this is clearly a perfect pairing, 7 is non-degenerate.

The construction clearly generalizes to the case where we start with an arbitrary finite
commutative k-group scheme H. For J# we now take G, ,, x H x H D and the group structure
is again given on points by (4). We refer to the resulting theta group as the Heisenberg group
associated to the group scheme H (or to the pair (H, HP)).

Our next goal is to show that under suitable assumptions the theta group of a line bundle
can be described as a Heisenberg group.

(8.22) Lemma. Let 0 — G,y — ¢ -, K — 0 be a non-degenerate theta group over a
field k. Let H C K be a subgroup scheme. Consider the following conditions.

(i) H is maximal totally isotropic w.r.t. the commutator pairing e: K x K — G, 1,

(i) H is totally isotropic and rank(H)? = rank(K),

(iii) H = H*.
Then (iii) < (ii) = (i). If k is algebraically closed the three conditions are equivalent.

Proof. The isomorphism v: K — KT induces an isomorphism K/H+ —~» HP. In particular,
rank(K) = rank(H) - rank(H'). Now H is totally isotropic precisely if H C H*. This readily
gives (iii) & (i) = (i).

To see that (i) = (iii) if k¥ = k, let H be maximal totally isotropic and assume that
H ¢ H*. By (8.7) the extension 0 — G, — 7 '(H) - H — 0 splits, so there exists
a level subgroup H C ¢ with w(H) = H. Writing ¢’ := 7~ '(H')/H we obtain a new theta
group 0 — G, — ¢’ -, HY/H — 0. As H # H' and k = k we can choose a subgroup
scheme I' € H+/H of prime order. By (8.7) 7'~ ' (I') is commutative. It follows that the inverse
image of I' under H+ — H*/H is totally isotropic. This contradicts the assumption that H is
maximal totally isotropic. U]

(8.23) Definition. Let ¥ be a non-degenerate theta group over a field k.

(i) A k-subgroup scheme H C K satisfying (ii) and (iii) in (8.22) is called a Lagrangian
subgroup. If H C 9 is a level subgroup then we say that His a Lagrangian level subgroup if
m(H) C K is Lagrangian.

(ii) A Lagrangian decomposition of K is an isomorphism K — H; x Hy such that v: K —
K?P induces an isomorphism v: Hy — HZP.

- 120 —



LagrDecLem

ThGr=Heis

ThGr=HeisExa

Condition (i) in (8.22) shows that for every non-degenerate theta group over k = k there
exist Lagrangian subgroups H C K. By (8.7) every such H can be lifted (still with k = k) to a
Lagrangian level subgroup of ¢.

If 7 is a Heisenberg group then, with the notations of (8.21), H and H” are Lagrangian
subgroups. So, a necessary condition for a theta group ¢ to be a Heisenberg group is that there
exists a Lagrangian decomposition. This is not always the case. For instance, suppose that E is
a supersingular elliptic curve over a field k of characteristic p > 0 and that ¥ is a theta group
with finite quotient equal to E[p]. One can show that E[p] has a unique non-trivial subgroup
scheme, isomorphic to ay,. It follows that ¢ is not a Heisenberg group .7 as in (8.21).

If the ground field is algebraically closed and K admits a Lagrangian decomposition then
we can describe ¢ as a Heisenberg group.

(8.24) Lemma. Suppose ¥ is a non-degenerate theta group over an algebraically closed field k.
(i) Assume that K =% /G, ;, admits a Lagrangian decomposition, say K = Hy x Hy. Then

4 is isomorphic, as a theta group, to the Heisenberg group associated to the pair (Hy, HP).
(ii) If rank(K) is prime to char(k) then K admits a Lagrangian decomposition.

Proof. (i) Lift H; (i = 1,2) to a Lagrangian level subgroup H; C ¢ and write &: H; — H; for
the inverse of the projection. Write 52 = G,,, , x Hy x H D for the Heisenberg group associated
to the pair (Hy, HP). If a: HP = H, is the inverse of v”: Hy — HP then the map J# — ¢
given by

(A2, x) = i(A) - &2 (X)) - &1 ()

gives the desired isomorphism of theta groups.
The proof of (ii) is done by the usual procedure of putting a symplectic pairing in canonical
form. For details we refer to Exercise 77. O

We apply this to non-degenerate line bundles L such that K (L) is finite and prime to char (k).
This last condition is equivalent to saying that the isogeny ¢r: X — X is separable (see Exercise
77), hence we say that L is a non-degenerate line bundle of separable type.

(8.25) Corollary. Let k be algebraically closed field. Let X be an abelian variety over k and
let L be a non-degenerate line bundle on X of separable type. Then there is a sequence of
integers di|ds| - - - |d,, called the type of L such that ¢ (L) is isomorphic to the Heisenberg group
associated to the group H = (Z/d1Z) X -+ x (Z/d, 7).

Here is another case where a theta group can be descibed as a Heisenberg group.

(8.26) Example. Let X be an abelian variety. If 22 = Py is the Poincaré bundle on X x X*
then we know from Exercise (7.5) that pg: X x X* — X' x X is given by (z,y) — (y,z). Hence
K(2) ={0} and 9(Z) = G,, is the trivial theta group.

Next consider an isogeny h: X — X' and let M := (1 x h)*Zx on X x X. (If h = ¢y, for
some non-degenerate line bundle L then M = A(L).) Note that also M = (h! x 1)*s*2?, where
s: X x X! =5 X' x X is the isomorphism switching the two factors. Identifying Ker(h!) =
Ker(h)? as in Thm. (7.5) we find that {0} x Ker(h) C K(M) and Ker(h)? x {0} C K(M), and
by comparing ranks it follows that in fact K (M) = Ker(h)? x Ker(h).

We claim that the theta group ¢ (M) is naturally isomorphic to the Heisenberg group
associated to the pair (Ker(h)”,Ker(h)). We already have natural actions of Ker(h)” x {0}
and {0} x Ker(h) on M, compatible with the actions on the basis by translations; this realizes
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Ker(h)P and Ker(h) as Lagrangian level subgroups of ¢ (M). An isomorphism # — ¢ (M) is
then obtained in the same manner as in the proof of (8.24).

84. Representation theory of non-degenerate theta groups.

As we have seen in (2.27), an abelian variety X of dimension g can only be embedded in
projective spaces of dimension at least 2g. Hence we will need, at least for large g, a rather large
number of equations to describe X. In a beautiful series of papers, Mumford [1] showed how one
can nevertheless set up a systematic study of the equations defining an abelian variety. Theta
groups play a crucial role in this. To explain why, suppose we choose an ample line bundle L
on X. To find the equations for X in the projective embedding defined by (some power of) L,
we must try to describe the kernel of the map

Sym"H°(X,L) — @ H(X, L")

n>=0

given by cup-product. The key observation is that HY(X, L) has a natural action of 4(L).
Under suitable assumptions we can identify ¢ (L) with a Heisenberg group, in which case the
representation H°(X, L) can be described very precisely. This then allows to choose a basis
for H°(X,L) (the elements of which are referred to as theta functions) that has particular
properties.

What is sketched here is discussed in much greater detail in Chapter 7?7 below. First,
however, we shall study representations of non-degenerate theta groups.

(8.27) Definition. Let ¢ be a theta group over a field k. If p: 4 — GL(V) is a representation
of ¢ then we say that p is a representation of weight n (n € Z) if poi: G, — GL(V) is given
by z +— 2" -idy.

We shall mainly be interested in representations of weight 1.

(8.28) Theorem. Let k be an algebraically closed field. Let 0 — G, — % — K — 0 be a
non-degenerate theta group over k such that rank(K) is prime to char(k). Then & has a unique
irreducible representation p = pg : 4 — GL(V) of weight 1 (up to isomorphism). We have
dim(V)? = rank(K).

If W is any representation of 4 of weight 1 then W' is isomorphic to a direct sum of copies
of pe. More precisely, if H C 4 is a maximal level subgroup then W = V& with a = dimy, (W)
equal to the dimension of the subspace of H-invariants in W.

Proof. Choose a maximal level subgroup H C 4. (By (8.22) it is Lagrangian.) As rank(K) is
prime to char(k) and k = k we can view K and H as constant groups.

Let 7: 4 — GL(W) be a representation of weight 1. Viewing W as a module under H
(which is abelian) it decomposes as a direct sum of character spaces:

W= @ Wy, with Wy:={weW]|r(h)(w)=x(h) wforalhecH}.
xE€Hom (H,k*)

An element g € ¢ defines a character x, € Hom(H,k*) by ¢! -h-g = Xg(h) - h. (That is,
xg(h) =971, h] € Gy,.) Then 7(g)Wy = Wiy, -
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As H is Lagrangian, its centralizer Cz C ¢ equals G,, - H (cf. the proof of (8.16)) and
g — Xg gives an isomorphism

v: Cz\% —- Hom(H, k*).

As furthermore the elements of Cy = Gy, - H act on each W, through scalar multiplications,
it follows that: (a) all W, have the same dimension, and (b) if 0 # w € W, then the elements
7(9)(w) span a ¢-submodule V' C W with dim(V NnW, ) =1 for all x.

Choose a section o: Hom(H,k*) = Cz\% — % of the projection ¥ —» Cz\¥4. Suppose
that W is irreducible. Choose 0 # w; € Wi, where 1 € Hom(H, k*) is the trivial character.
For x € Hom(H, k*) set w, := 7(c(x))(w1) € Wy. Then {w,} is a k-basis of W. If g € & has
image 1 in Hom(H, k*) then there is a unique ¢ = (g, x) € Cz such that g-o(x) = c-o(n - x).
Then the representation 7 is completely described by 7(g)(wy ) = 7(c(g, x))(wyy ). (Note that
c(g,x) € G- H, so we know how it acts on the spaces Wy.) As the elements ¢(g, x) only depend
on the structure of 4 and the chosen section o, it follows that there is at most one irreducible
representation of weight 1, up to isomorphism. Conversely, our description gives a simple recipe
of how to construct one. (See also (8.29) below.) This shows that there is a unique irreducible
representation p: 4 — GL(V) of weight 1.

To prove the last assertions, write r = rank(K) = rank(H)? and consider the subgroup
Y[r] C ¢4 of elements g with ¢" = 1. As ¥ is generated by G,, and ¥[r|, a weight 1 representation
W of ¢ is completely reducible (i.e., a direct sum of irreducible representations) if and only if it is
completely reducible as a representation of ¢[r]. But ¢[r] is a finite group of order not divisible
by char(k). Therefore all k-representations of ¢[r| are completely reducible. If W = V¢ then
a = dim(W;) = dim(W#). O

(8.29) The standard representation of a Heisenberg group. By (8.24), the theta group ¢ in the
theorem is isomorphic to a Heisenberg group J# = G, 1. x H x HP with

H>(Z)dZ) x -+ x (Z/)d,Z), HP = Hom(H,k*) = pg, (k) x --- % pg, (k).

We can take H := {(1,h,1) | h € H} as a Lagrangian level subgroup. In the proof of the
theorem we have seen how to construct an irreducible weight 1 representation. The result can
be described as follows.

Let V' be the space of functions on H with values in k. Then we have a representation
p: A — GL(V) given by [p(A, z,x)(f)](h) = X-x(h)- f(z+h) for f € V and h € H. One easily
checks that this indeed gives an irreducible representation of weight 1.

More generally, let H be an arbitrary finite commutative group scheme over a field k. Write
Ap :=T(H,Op) for its affine algebra and let 5 = G, j, x H x HP be the associated Heisenberg
group, as defined in (8.21). Then we have a representation

p: H — GL(Ag)
by letting (A, z,x) € A act on Ay by

where we view x as an invertible element of Ay. More precisely, we should write (A, x,x) €
H(T), where T is a k-scheme. For simplicity, assume that 7' = Spec(R) is affine. Then p(\, x, x)
is an R-linear automorphism of Ay ®; R. Now notice that x is given by an invertible element
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Again this resentation p is irreducible of weight 1. We shall refer to it as 77.

(8.30) We now wish to lift the restrictions on the characteristic of k. In the case considered
above the desired representation was realized as a representation on the space of functions on a
Lagrangian level subgroup. Therefore is natural to consider representations of ¢ on spaces of
functions on ¥.

We work over an algebraically closed field k. As K is a semi-local scheme, we can trivialize
4 as a G,,-torsor over K. So, we can choose an isomorphism ¢4 — G,,, x K of K-schemes via
which the G,,-action on ¢ corresponds to multiplication in G,, on the right hand term. Writing
K = Spec(Ap) this gives 4 = Spec(B), with

B = Aplt, t_1 @Al, where we set  A; 1= Ay - t*.
1E€EZ

We can view A; as the vector space of those functions f: ¢ — A! such that f(Az) = A" - f(x)
for all A € G,,,. (This has to be read functorially: if R is a k-algebra then A; ®; R = {f €
Homp(9r, AL) | f(Az) = X' - f(z) for all X € G, }.)

As will become clear in the proof of (8.32), the space A; is the most interesting for us.
(That is, if we want to study representations of weight 1.) Note that dim(A;) is the square
of the dimension of the irreducible ¥-representation that we are looking for. We consider the
action of 4 x & on A; given by

[(g,h)-f](x):f(h_lxg) for fe A ,(gh) €9 x9Y and z €Y.

(Again this has to be read functorially.)

(8.31) Lemma. With this action A; is an irreducible 4 x ¢-module.

Proof. First we look at the diagonal ¥-action. If g € ¢4 and f € A; then (g, g)- f is the function
given by

-1

z— f(g xg)ng 1‘91’ 1'35)

(
(

=f [ 2l - )
=g ] f(z) (because f € Ay and [g7 !, 2] € G,,)
= 6(7T(9) L) - fl).

Each v € K defines a character e(y, —): K — G,,. If x is any such character then yom: 4 —

G, C A can be viewed as an element of Ag. The previous calculations show that ¢ 2. Gxq —
GL(A;) factors through ¢ — K and that the resulting action of K on A; is given by

vof=lmee(y™ D) f  for yeK,feEA.

Suppose that £ C A; is a 4 x ¥-submodule. The non-degeneracy of our theta group means
that every character x: K — G,, is of the form e(y~!,—) for some v € K. Furthermore, the
k-characters x form a k-basis of the k-algebra Ag; see Exercise 77. It thus follows from the above
that F is an Ag-submodule of A;. But A; = Ag - ¢, so E is of the form IA; with I an ideal
of Ap.

So far we have only used the diagonal action of ¢. Using the full action of ¢4 x ¢ again we
see that E is stable under all translations by elements of ¢. Combined with the previous it now

readily follows that £ = (0) or £ = A; O
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We can now generalize Theorem (8.28).

(8.32) Theorem. Let ¢4 be a non-degenerate theta group over an algebraically closed field k.
Then ¢ has a unique irreducible representation p = py: 4 — GL(V') of weight 1 (up to isomor-
phism). We have dim(V)? = rank(K). If W is any representation of 4 of weight 1 then W is
isomorphic to a direct sum of copies of pg.

Proof. Let 7: 4 — GL(W) be a representation of ¢ of weight 1. Then 7 gives rise to a homo-
morphism of 4 x ¥-modules r: W* @ W — A;, by

rp@w)(g) =o(r(g)(w))  for peW  weWand ge¥.

Suppose that W is irreducible. Then W* ®; W is an irreducible ¢ x ¢-module. (Here we
need that k = k ! The point is that Endg o (W* @ W) = Endg(W*) ®; Endg(W). As k =k
the irreducibility of W implies that Endg (W) = k = Endg (W*).) As r is obviously not the zero
map it follows from the lemma that r is an isomorphism. We conclude that A; 2 W & -.- @ W
(dim (W) factors) as a 4-module, that there is a unique irreducible ¢-module of weight 1, and
that rank(K) = dim(A;) is the square of its dimension. We also see that A; is completely
reducible as a ¢-module.

Now let W be an arbitrary ¥-module of weight 1 again. Then r gives a k-linear map
r': W — Hom(W* A1) = W ® Ay, sending w € W to ¢ — (¢ @ w). From (¢ @ w)(1) = p(w)
we see that 7/ is injective. Moreover, if we let ¢ act on W ® A; through its action on A; then
r’ is ¥-equivariant. We conclude that W is isomorphic to a ¢-submodule of A‘fim(W). As Aq is
a completely reducible 4-module, W is also completely reducible. g

Exercises.

(8.1) Let k be an algebraically closed field. Let K be a finite commutative group scheme of
order prime to char(k). Let e: K x K — G,, be a non-degenerate alternating bilinear pairing,
i.e., e is a morphism of k-schemes such that (a) e(x,y) = e(y,z)~t, (b) for fixed x € K the maps
y — e(z,y) and y — e(y,x) are homomorphisms, and (c) the homomorphism K — K given
by = — e(x,—) is an isomorphism.

(i) Show that K is isomorphic to a constant group scheme of the form

K = (Z)d17) % (Z)dsZ) % -+ - x (Z)dnT) ,

where we may require that dy|dz|---|d,. (And if char(k) = p > 0 then ptd,.)

(ii) Choose an element a € K such that K is a product K = (a) x K’'. Let d be the order of
a and let (4 € k be a primitive dth root of unity. Show that there is a unique b € K with
e(a,b) = (4 and e(k,b) =1 for all k € K'.

(iii) Let K" := {k € K' | e(a,k) = 1}. Show that K decomposes as a product of groups
K = (a) x (b) x K"". Also show that the restriction of e to K" x K" is again non-degenerate.

(iv) Prove that there exists a finite commutative k-group scheme H and an isomorphism K ——
H x HP via which the pairing e corresponds to the pairing on H x H? given by

((,x), (@, X)) = X' (x) - x(z") 7"
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Chapter IX. The cohomology of line bundles.

In this chapter we study the cohomology of line bundles on abelian varieties. The main results
are the Riemann-Roch Theorem (9.11) and the Vanishing Theorem for non-degenerate line
bundles (9.14). The key step in deriving these results is the computation of the cohomology of
the Poincaré bundle on X x X?.

(9.1) Theorem. Let X be a g-dimensional abelian variety over a field k. Let & be the Poincaré
bundle on X x X' and write py: X x X' — X! for the second projection. Then the sheaves
R"py &7 and the cohomology of & are given by

" 0 ifn#g;
R'pp & = {ig(kz) ifn =g,

and

0 ifn#yg;

Hn(XXXt"@):{k ifn=g.

Here io(k) denotes the skyscraper sheaf at 0 € X! with stalk k.

Proof. As the proof is a somewhat long we divide it into steps, (9.2)—(9.9).

(9.2) We look at the higher direct image sheaves R"ps .2 on X'. If y € X'\ {0} then the

restriction of & to X x {y} is a non-trivial line bundle on X with class in Pic". As was proven

in (7.19) such sheaves have zero cohomology. Applying (i) of (7.20), it follows that R"ps &

has support only at 0 € X?, for all n. As the closed point 0 is a zero-dimensional subscheme

of X* we have H (X', R"ps %) =0 for all i > 1. (Use HAG, III, Thm. 2.7 and Lemma 2.10.)
Applying the Leray spectral sequence

ED? = HP(X', Ry, ) = HPMI(X x X', P)

we find that
H"(X x X', 2) = H (X', R"py.. P). (1)

As py is projective of relative dimension g we have (HAG, III, Cor. 11.2) R"ps & = 0 for all
n > g. Hence also H"(X x X!, 22) =0 for n > g.

Next we apply Serre duality to the Poincaré bundle. We have £#2~! = (-1,1)*% =
(1,—1)*Z; see Exercise (7.4). In particular the cohomology of &2~! is the same as that of 2.
As X x X' is an abelian variety its dualizing sheaf is trivial, and Serre duality (in the form given
by HAG, III, Cor. 7.7) gives

H"(X x X!, ?) =2 H* (X x X!, 271V =2 g2 "(X x X!, 2)V.

Hence H™(X x X', %) = 0 for all n < g too. By (1) and the fact that the R"ps .2 are
supported at 0 we also have R"ps & = 0 for n # g.

CohomLB, 8 februari, 2012 (635)

- 126 —



CPBStep2

CPBStep3

JohomLB:GrDuall

>ohomLB:GrDual2

CPBStep4

(9.3) Let A := Oxt g be the local ring of X* at 0. Let m C A be the maximal ideal. It follows
from (1) that (R9py )¢ is an A-module of finite length. By (?7) the natural map

(RQPQ,*QZ) ®OX*« H(O) — HQ(X X {0}><@|X><{0}) = Hg(X, OX) =k

is an isomorphism. Using the Nakayama lemma, we find that (R9ps.2?)y = A/a for some
m-primary ideal a C A.

To complete the proof of (9.1) it remains to be shown that a = m. This is the hardest
part of the proof. We need to exploit the fact that &2 is the universal line bundle on X x X;
thus far we have not made full use of this. In particular, we know that &2 is trivial over
X x {0} = X x Spec(A/m), but not over any “thickening” X x Spec(A/J) for J C m. The
problem is how to translate this into information about R9p; . Z.

We shall give two proofs of the fact that a = m. The first proof uses Grothendieck duality
and is fairly short; the second relies on essentially the same ideas but is more elementary.

(9.4) Let Z be a scheme. Write Mod(Z) for the category of Oz-modules and D(Z) for its
derived category. If F' is a sheaf of Oz-modules and n € Z, write F[n] for the object of D(Z)
represented by the complex whose only non-zero term is the sheaf F', sitting in degree —n. The
functor Mod(Z) — D(Z) given by F — F[0] realizes Mod(Z) as a full subcategory of D(Z).
If C* is a complex of Oz-modules with the property that s#*(C*) = 0 for all i # n, for some
integer n, then C* = " (C*)[—n] in D(Z).

To simplify notation we write Y := X x X*. A corollary of Grothendieck duality, applied to
the morphism po: Y — X?, is that for quasi-coherent O x:-modules G we have an isomorphism

Homo, (2,p3G) = Homo , (R7p2. 2, G), (2)

which is functorial in G. Before we start exploiting this, let us indicate how this is obtained
from the general machinery of Grothendieck duality.
We already know that ps is a smooth morphism of relative dimension g and that 2

g o
Y/Xt =
Oy . Consider a bounded complex F'* of quasi-coherent Oy-modules and a bounded complex G*

of quasi-coherent O x¢-modules. Then a consequence of Grothendieck duality is that we have a
canonical isomorphism

Hompy) (F*,p3G°[g]) — Homp(x+)(RpaF*,G"). (3)

See Hartshorne [1], Chap. III, § 11, and use that the functor p} is given by G* — p5G*|[g]; see
op. cit., Chap. III, § 2. We apply this with F** = &?. We already know that Rp, ,F"* only has
cohomology in degree g. As explained above, this implies that Rps . F'* is isomorphic, in D(X*),
to RIps . Z[—g|. If we now apply (3) with G* = G[—g] for some quasi-coherent O x:-module G
then we obtain (2).

(9.5) Let J C A be a proper ideal (with A = Ox: o, as above). Write Z(J) := Spec(A4/J),
and let i(J): Z(J) — X' be the natural closed immersion. Write Y (J) := X x Spec(A/J) =
pgl(Z(J)) C Y. In particular, Y(m) = X x {0}. If we write &?(J) for the restriction of &2
to Y(J) then Homo, (2, OY(J)) = HOmOYU> (QZ(J), OY(J)).

Suppose J is an m-primary ideal. Via the natural map Ox: — i(J).Oz(y), the structure
sheaf Oy is then just the skyscraper sheaf ig(A/J) at 0 € X* with stalk A/J. Further Y'(J) is
the closed subscheme of Y = X x X' with underlying topological space | X x {0}| and structure
sheaf p507(;) = Ox @ A/J.
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As explained in (9.3), we have R9p, &7 = ig(A/a) for some m-primary ideal a C A. Now
consider the commutative diagram

12

Homo, (2,0y (@) — Homoxt(io(A/a),io(A/a)) Ala

l l l

Homo, (2,0y ) —  Homo, (io(A/a),io(k)) = k

where the horizontal arrows are given by (2) and the vertical arrows are induced by the quotient
map A/a — A/m = k.
We have a natural isomorphism h: & (m) = Z|x 10} . Ox. This gives us an element

h e Homop, ((@7 OY(m)) = HOHlOXX{O} (9|X><{0}7 OXX{O}) .
From the diagram we see that h can be lifted to an element

iL € HOIHOY (32, Oy(u)) = I‘IOIIIOY<Cl> (@(C{), Oy(u)) .

Then h: 2(a) — Oy (a) is a homomorphism of line bundles on Y (a) which is an isomorphism
modulo m. It follows that A is an isomorphism, too. This shows that the pull-back of & under
idy x i(a): X x Spec(4/a) — X x X' is trivial. By the universal property of &2 this implies
that i(a): Spec(A/a) — X' factors through the closed point {0} = Spec(k) C X*. Hence a =m
and RIpy & = iy(k). This finishes our (first) proof of Theorem (9.1). O

(9.6) Our second proof that (RIps . Z?)g = k is not very different from the first, but it replaces
Grothendieck duality by more explicit arguments.

We use the notation introduced in (9.5). In particular, if J C A is a proper ideal, the second
projection pg: X x Xt — X! restricts to a morphism po: Y (J) — Z(J). We shall systematically
confuse R9p, , 2 (J) with its A/J-module of global sections. Note that Z((0)) = Spec(4) — X*
is a flat morphism; hence R9p, ,2((0)) is the same as the restriction of R9p, .2 to Z((0)).
(See HAG, Chap. III, Prop. 9.3.) Thus, our goal is to prove that Rgpgv*@((O)) ~ k.

We apply the results about cohomology and base-change explained in (?7). This gives us a
length g complex (with ¢ = dim(X) = dim(A)) of finitely generated free A-modules

K: 00—k L gt gt Y g g (4)

with the property that for all ideals J C A and all n we have
R'py P (J) = A" (K" ®4 A)J),

functorially in A/J. (In fact, a similar statement holds with A/J replaced by an arbitrary A-
algebra, but we will not need this.) In particular J#"(K*) = R"p, 2. But as shown in (9.2),
R"py & = 0 for n < g; so K°® is a resolution of J#9 := 9(K*). We want to show that
HI = A/m = k.

Consider the “dual” complex

L° 0—>L0LL1L---—>L9_1£>L9—>0
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where L7 := Hom 4 (K977, A), and where &7 is the map induced by d9=!=7. Set
Q := HI(L") = Coker(6971: L9t — L9).

The next lemma (taken from MAV, p. 127) tells us that L° is a free resolution of Q). (Note
that all " (L") are artinian A-modules, as easily follows from the corresponding fact for the
complex K°.)

(9.7) Lemma. Let A be a g-dimensional regular local ring. Let
C*: 0—C'—C'—... —(C9—0

be a complex of finitely generated free A-modules such that all cohomology groups 57 (C*) are
artinian A-modules. Then 5#7(C*) = 0 for all j < g.

Proof. We use induction on g. For g = 0 there is nothing to prove, so we may assume that g > 0
and that the lemma holds in smaller dimensions. Choose z € m \ m?, so that A/(z) is regular
of dimension g — 1. Put C* := C*/(z), so that we have an exact sequence of complexes

0—C"5%C"—C —0.
In cohomology this gives the long exact sequence
s HNC) L N(Ct) — (O — () S TN — -

We see from this that the #(C"®) are artinian modules, and by induction #¢(C*) = 0 for all
i < g—1. Hence multiplication by z is injective on #7(C*) for all j < g. But 5#7(C") is
artinian, so it is killed by =V for N > 0. This proves the induction step. O

(9.8) From (7.27) we know the cohomology of the complex K* ®4 k = [0 — K°/mK° —
K'/mK! — ...]. In particular we have #°(K* ®4 k) = H°(X,0x) =k and #9(K* ®4 k) =
HY9(X,0x) = k. This gives us that 9 /m#9 = k and Q/mQ = k. By Nakayama’s Lemma
it follows that the A-modules 579 and () are both generated by a single element, so there exist
ideals a and b of A with

9= Ala and Q= Ab.

(For 229 this repeats what was explained in (9.3).)
Let J C A be an ideal. Put

HY :=Ker(K"/JK° — K'/JK") = H* (Y (J), 2(J)) .

Applying Homa(—, A/J) to the exact sequence LI~1/JLI™' — LI/JLI9 — Q/JQ — 0 gives
the exact sequence

0 — Hom(Q/JQ, A/J) — K°/JK® 2o KV JK?

which shows that
HY =~ Homa(A/b+J,A)J). (5)
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The isomorphism (5) is functorial in the ideal J, in the sense that for J; C Jy the natural
reduction map H 91 — H 92 corresponds to the natural map

HOHIA(A/[J + Jl, A/Jl) — HOHIA(A/b + Jl,A/JQ) = HOHIA(A/b + JQ,A/JQ) .

We now use that, by definition of X*, the closed point 0 € X! is the maximal closed
subscheme over which & is trivial, in the sense of (2.4). Taking J; = b and J; = m in the
above we find that the section 1 € k = H°(X,0x) = H°(Y (m), 2(m)) lifts to a global section
of Z(b). With the same arguments as in (9.5) it follows that &?(b) = Oy (), and by the universal
property of &2 this is possible only if b = m.

(9.9) We have shown that L*® is a free resolution of the A-module A/m = k. Another way to
obtain such a resolution is to use a Koszul complex. This works as follows. Choose a regular
system of parameters x1,x2,...,7, € m, i.e., a sequence of elements which generate m and which
give a k-basis for m/m?2. Consider the complex

F*: 0—F" —F' —... - F9 50
where 7 = /\Q(Ag) and where, writing = (z1,...,24) € A9, the differential
@z Ny (A7) — AT (AT)

is given by v — x A v. Then F*, the so-called Koszul complex associated to the sequence z, is
also a free resolution of k.

By (?7) the complexes L* and F* are homotopy equivalent. “Dualizing back” we then find
that the complex K° is homotopy equivalent to the dual of the Koszul complex F°*. The first
terms of F'* are given by

0
0—ALsa9 ... Withdo:a|—>(x1a,x2a,...,:cga).

The last non-zero terms of the dual complex are therefore given by

dO*
---—>A9LA—>O with (d°)*: (a1,as,...,aq) — x101 + To2a2 + - + T4a4 .

With this we can finally compute:
(RIps P)o = HI(K®) = A9 ((F*)*) = Coker((d°)*) = A/m =k
and this finishes the (second) proof of Theorem (9.1). O

(9.10) The following result we want to prove is the Riemann-Roch theorem for abelian varieties.
Let X be a proper scheme of finite type over a field k. If F' is a quasi-coherent O x-module
then its Fuler characteristic is defined to be the integer

X(L) =Y (=1)" - dimy H (X, F).

i>0

Suppose X is projective and H is a very ample line bundle on X. Then n — x(F ® H")
is a polynomial function of n. More precisely, there is a polynomial with rational coefficients
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¢ = ®py € Q[t], called the Hilbert polynomial of F' (with respect to H), such that ®(n) =
X(F ® H™) for all n € Z. Note that there is a natural number ng such that H*(X,F ®@ H") =0
for all i > 0 and all n > ng; hence ®(n) = dimy H*(X, F @ H™) for all n > ng.

This “polynomial behaviour” of the Euler characteristic with respect to its entries is a
much more general phenomenon. For instance, suppose X is a smooth proper variety over k
and Fy,..., F, are vector bundles on X (or, more generally, coherent Ox-modules). Then the
function (nq,...,n,) — x(Fi" ®---® F') is polynomial in the r-tuple of integers (n,...,n,).
This is a consequence of the Hirzebruch-Riemann-Roch theorem. When X is an abelian variety
the Riemann-Roch formula takes a particularly simple form and the polynomial dependence of
X(F{" ® -+ ® E*) on the exponents n; becomes obvious; cf. (9.13).

(9.11) Riemann-Roch Theorem. Let L be a line bundle on a g-dimensional abelian vari-
ety X. Then

X(L) = ci(L)?/g! and x(L)* = deg(L) .

Thus, if L = Ox(D) for some divisor D then the first equation says that x(L) equals
(D9)/g!, where (DY) is g-fold self-intersection number of D. Notice that, by slight abuse of
notation, we write ¢y (L)9 for deg(c1(L)?) = [y c1(L).

We shall prove the theorem together with the following corollary.

(9.12) Corollary. Let f: Y — X be an isogeny. If L is a line bundle on X then x(f*L) =
deg(f) - x(L).

Proof of (9.11) and (9.12). First we show that x(L) = ¢1(L)?/g!. For this we use the Hirzebruch-
Riemann-Roch formula, which says that

X(L) = [ (1) 1d(Tx). (©
b's
Here ch(L), the Chern character of L, is the power series
ch(L) = exp (e1(L)) =1+ e1(L) + c1(L)?/2+ - -

which should be thought of as a formal expression. Similiarly, td(7’x), the Todd class of the
tangent bundle Ty, is a formal power series in the Chern classes of T'x. As Tx is trivial we
have ¢;(Tx) = 0 for all « > 1 and td(Tx) = 1. This reduces (6) to the desired equality
x(L) = [y c1(L)?/g!. Notice that, in particular,

X(L™) =m? - x(L) (7)

for all m € Z.

To prove (9.12) we may assume that k = k. Let f: Y — X be an isogeny of degree d. Then
c(f*L)9 = f* (cl (L)g) in the Chow ring of Y. (Alternatively we may use any Weil cohomology,
such as f-adic cohomology for some ¢ # char(k), or Betti cohomology in case the ground field
is C.) But ¢1(L)? is represented by a 0-cycle (a formal sum of points), so all that remains to be
shown is that [, f*[P] = d for every point P € X. This is clear if f is separable, for then f~*(P)
consists of d distinct points, each with multiplicity 1. It is also clear if f is purely inseparable,
because then f~!(P) consists of one single point, say @, and Oy g is free of rank d over Ox p.
The general result follows by combining these two cases, using (5.8). This proves Cor. (9.12).
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Next we show that x(L)? = deg(pr). We first do this for non-degenerate line bundles L.
The idea is to compute x(A(L)) in two different ways.

So, assume that L is non-degenerate. As usual we write A(L) for the associated Mumford
bundle on X x X. We have a cartesian diagram

X x X dxxer oy oyt

.| 1

X — Xt
$L

Further we know that A(L) = (idx x ¢r)* <2, and ¢, is an isogeny with kernel {1} x K(L). By
(9.1) and flat base change,

0 if n # g;

n _ * mn,./ —
R Pz,*A(L) = %L (R p27*<@) - {i*OK(L) ifn=g,

where ¢: K(L) — X is the inclusion. Using a Leray spectral sequence, as in (9.2), we find

W (X x X,A(L)) = {geg(%) ﬁ Z i if (8)

CohomLB;hnLam
Here, as usual, we write h"(—) := dim H"(—). In particular,

CohomLB; chiLam X(A(L)) = (=1)9 - deg(pr) - (9)

(A quicker proof of (9) is to use (9.12), but we shall need (8) later.)
For the second computation of x(A(L)), recall that A(L) := m*L ® p{L~' @ psL~'. The
projection formula therefore gives

R'py A(L) = R"py (m*Lepi L") @ L1,

We know that R"p, . A(L) is supported on the finite subscheme K(L) C X. As L can be
trivialized over K (L) we find that

R'py (m* L@ piL™") @ L' = R"py . (m*L @ piL™").
Once again computing cohomology via a Leray spectral sequence we conclude that
CohomLB ; HnLamb H™(X x X,A(L)) 2 H*(X x X,m*L®@piL™")  for all n. (10)

Now remark that (m x p;): X x X — X x X is an isomorphism with (m x p;)*(pjL@p3L~") =
m*L ® p;L~!. By the Kiinneth formula it follows that

HX x X,m*"LepiL™ ") 2 H"(X x X,piLep;L )= @ HY(X,L)®@ HI(X,L™"). (11)
CohomLB ; Kunn p+q=n

Combining (10) and (11) we find
CohomLB; chichi X(A(L) = x(piLeops L") = x(L) - x(L™") = (-1)9 - x(L)?, (12)

-132 —



RRAVRem

VanishThm

IndexDef

DivECInd

ThRepCor

where the last equality follows from (7). Comparing the two answers (9) and (12) proves that
X(L)? = deg(ipr) for non-degenerate L.

Now suppose that L is degenerate. Then ¢, is not finite and, by convention, deg(¢r) = 0.
We want to show that x(L) = 0 too. It is still true that A(L) = (idx X ¢)* <. We rewrite this
as

m*L@psL " = (idx x L) (2 @piL).

The same argument as above gives that x(m*L®@p3L~") = (=1)9-x(L)?. (Notice that this part
of the above argument works without the assumption that L is non-degenerate.) If H C K (L) is
a subgroup scheme of order r then idx x ¢y, factors through the projection X x X — X x X/H,
and by (9.12) it follows that X(m*L ® péL_l) is divisible by . But K(L) contains subgroup

schemes of arbitrarily large order (in fact, K(L)% , is an abelian subvariety of X of positive

red
dimension), and we conclude that x(L) = 0. This finishes the proof of the theorem. O
(9.13) Remark. If F is a coherent sheaf on a g-dimensional abelian variety X then Hirzebruch-

Riemann-Roch gives x(F) = [ chy(F) where chy is a certain polynomial in the Chern classes
of F. See Fulton [1], Example 3.2.3.

Looking at the proof of (9.11) we see that for non-degenerate bundles we can draw one
further conclusion.
(9.14) Vanishing Theorem. If L is a non-degenerate line bundle then there is a unique
integer i (necessarily with 0 < i < g) such that H*(X, L) # 0.
Proof. Combining (8), (10) and (11) we have shown that

p Cha(r—1y 0 if n/;E g,
p;q;nh (B W) = {deg(soL) if n=g.

As all R*(L) and h/(L™') are in Zxq this is possible only if there are unique p and ¢ (with
p+q = g) such that h?(L) # 0 and h9(L~') # 0. O

(9.15) Definition. If L is a non-degenerate line bundle then the unique index i = i(L) such
that h*(L) # 0 is called the index of L.

Note that ¢(L) = 0 just means that L is effective.

(9.16) Example. Let D be a divisor of degree d on an elliptic curve E. Riemann-Roch for
curves gives X (Og(D)) = d. It follows that

D is degenerate <= d=0
D is non-degenerate of index 0 <= d>0
D is non-degenerate of index 1 <= d <0

(9.17) Corollary. Let X be an abelian variety over an algebraically closed field k. Let L be a
non-degenerate line bundle on X with index i = i(L). Then H*(X, L) is the unique irreducible
weight 1 representation of the theta group 4(L).
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Proof. That H*(X,L) is a %(L)-representation of weight 1 is clear, for instance, using Cech
cohomology. The corollary thus follows from (8.32) by a dimension count. Indeed, we have

(dim H'(X, L))? = x(L)? = deg(pL) = rank(K (L)),

as required. N

If L is a non-degenerate line bundle with index i then (L) = (=1)* - h*(L). In particular,
x(L) has sign equal to (—1)*%),
Hilbert polynomial of L. As a preparation for this we collect some properties of the index as a
function on the set of non-degenerate bundles.

We shall later see how the index can be read off from the

(9.18) Proposition. (i) Let L be a non-degenerate line bundle on a g-dimensional abelian
variety X. Then i(L=1) = g —i(L).

(ii) “The index is (locally) constant in algebraic families”: If T' is a locally noetherian k-
scheme and M is a line bundle on X x T' such that all My :== M|x ) are non-degenerate then
the function t — (M) is locally constant on T. In particular, if L is as in (i) and L' is a line
bundle on X with [L'] € Pick ;, then i(L) = i(L® L).

(iii) Let f: X — Y be an isogeny of degree prime to char(k). If M is a non-degenerate line
bundle on'Y then f*M is non-degenerate too and i(f*M) = i(M).

(iv) If L is non-degenerate and m # 0 then L™ is non-degenerate too. Furthermore, if
m > 0 and char(k) { m then i(L™) =i(L).

(v) If Ly, Ly and Ly ® Lo are all non-degenerate then i(L; ® Lo) < i(Ly) +i(Ls).

(vi) If H is ample and L and L ® H are both non-degenerate then i(L ® H) < i(L).

Notes: In (9.23) below we shall sharpen (iv), showing that i(L™) = (L) for all m > 0. In
(9.26) we shall show that (iii) holds without the assumption that deg(f) is prime to char(k). If in
(ii) the scheme T is geometrically connected then it suffices to require that M; is non-degenerate
for some t € T (as K(M;) does not jump in such families), and the conclusion is that ¢ — (M)
is constant on T'. The requirement that T is locally noetherian is in fact superfluous, as we can
reduce to the “universal” case T' = Picx .

Proof. Statement (i) was already found in the proof of (9.14). Alternatively, it follows from
Serre duality.

The first statement of (ii) follows from the fact (HAG, III, Thm. 12.8) that for all j the
function ¢ — dimg) H’ (X ® k(t), My) is upper semi-continuous. The second statement follows
by applying this to the Poincaré bundle over X x Picy /. Alternatively, passing to an algebraic
closure of k the bundles L ® L’ with [L/] € Pic% /i are precisely the line bundles of the form ¢; L.
In cohomology the translation ¢, induces an isomorphism between H7(X, L) and H’(X,t:L).

(iii) As shown in (7.6), f*M is again non-degenerate. We have f,(f*M) = M ®¢o, f.Ox.
We claim that the sheaf Oy is a direct summand of f,Ox, hence M is a direct summand of
fof*M. Indeed, if r = deg(f) then f.Ox is locally free of rank r over Oy and by assumption r
is invertible in Oy. If trace: f.Ox — Oy is the trace map then (1/r) - trace is a section of the
natural map Oy — f.Ox, so f.Ox = Oy @ Ker(trace).

Since f is finite, a Leray spectral sequence shows that H(X, f*M) = H' (Y, f.f*M) for
all i (see also HAG, III, Exercise 4.1), and we conclude that H*(Y, M) is isomorphic to a direct
summand of H(X, f*M). This proves (iii).

(iv) We have K (L™) =m~'(K(L)). Hence L™ is non-degenerate for m # 0. Now assume
that m > 0 is relatively prime with char(k). We use the notation and the results of Exercise (7.8).

- 134 -



FrobSplitRem

hiEstLem

Consider the line bundle L®* on X* given by L¥* = [¥ids = @2 »*[. (Here idy denotes the
identity matrix of size 4 x 4.) It is readily seen that L¥* is again non-degenerate (in fact,
K (L¥*) = K(L)*), and by the Kiinneth formula we have i(L¥4) = 4-4(L).

We write m > 0 as a sum of four squares, say m = a® + b? + ¢? + d?. Consider the matrix

a —-b —c¢c —d
b a —-d c
A= c d a —b
d —c b a

which should be thought of as representing the quaternion a+bi+cj+dk. We have At-A = m-idy.
Now consider the homomorphism o = a4: X* — X% associated to A, and apply part (i) of
Exercise (7.8). This gives that o (L¥4) and (L™)®* differ by something in Picg(/k; hence by (ii)
they have the same index. But by (iii) the index of a*(L¥) equals that of L¥4. Putting
everything together we find that

(L) =1/4-i(L¥) = 1/4-i(L™)®) = i(L™),

as claimed.

(v) Let i1, iz and ¢ be the indices of L1, Ly and L1 ® Lo, respectively. Consider the line bundle
N :=piL; ®p5Ls on X x X, and let v: X x X — X be given by v(z,y) = x —y. The fibre of v
over 0 is the diagonal X = A(X) C X x X, over which N restricts to the bundle L; ® Lo. By (ii)
it follows that all fibres of N have index ¢, so that R7v,N = 0 for all j < ¢. By a Leray spectral
sequence this implies that H’/(X x X, N) = 0 for all j < «. But the Vanishing Theorem together
with the Kiinneth decomposition show that H" (X, L1) ®, H®(X,Ly) = H " 2(X x X, N).

Finally, (vi) follows from (v), as it follows from (iv) that ample bundles have index 0. O

(9.19) Remark. The fact used in the proof of (iii) that Oy is a direct summand of f.Ox is
not necessarily true if the degree of f is divisible by char(k). For instance, suppose X is an
abelian variety over a field k of characteristic p > 0, such that X is not ordinary, i.e., f(X) < g.
Then the relative Frobenius map Fx/p: X — X (P) is an isogeny of abelian varieties, but it
can be shown that Ox ) is in this case not a direct summand of Fx/; .Ox. In the literature

one finds this as the statement that a non-ordinary abelian variety is not Frobenius split; see
Mehta-Srinivas [?77].

For the proof of the following proposition we need a somewhat technical, but important

lemma.

(9.20) Lemma. Let Y be a d-dimensional projective scheme over a field. Let L1, - -, L, be line
bundles on Y. For a = (a1,...,a,) € Z", set |a| := |ai| + -+ |a,| and L& := L{* ® --- ® L.
Then there is a constant C' > 0, only depending on Y and the bundles L;, such that

B(Y,L%) < C-(1+al")

for all t and all ¢ € Z".

Proof. If all L; are trivial then the assertion is clear; this covers the cases d = 0 and r = 0. Next
we reduce to the case when all L; are very ample. For this, choose a very ample bundle M such
that each of the

M;=L;®@M (1<j<r)
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is very ample, too. Suppose we know the lemma for the line bundles My, ..., M,, M,1q. If C'is
the resulting constant then for all a € Z", putting o(a) :=ay + - - - + a,,

WY, L) = B (Y, M{" @ -+ @ Mo @ M) < C- (1+ {la| + o(0)]}")
<C-(1+{2)a)}7) <(3C) - (1 +al").

From now on we may therefore assume all L; to be very ample.

We proceed by induction on the integer d + r. The case d + r = 0 is already dealt with.
Assume the lemma is true whenever d + r < v. As the lemma is true when r = 0, it suffices to
do the case when we have r 4+ 1 very ample bundles, say L1,..., L, and M, on a d-dimensional
projective scheme Y, such that d+r+1=v + 1.

Let Z C Y be a hyperplane section for the projective embedding given by M. For every
a € Z" and b € Z we have an exact sequence

0— Lt M — Lt MY — (L@ M"),; — 0.
In cohomology this gives an exact sequence
H"™YZ,L*® M) — H'(Y,L*® M"™') — H'(Y,L*® M") — H'(Z,L* ® M")

which gives
(Y, L% ® M%) < h (Y, L@ M>™1) + hi(Z, L2 @ M?) (13)

and
RUY, L2 @ MY~ < hH(Y, L2 ® M°) + b1 (Z, L2 @ M?). (14)

By induction hypothesis we have estimates for h*(Y, L2 ® M®) when b = 0 and for the terms
hi(Z,Le® M"). For b > 0 we get the desired estimates by iterated application of (13); for b < 0
we do the same using (14). O

(9.21) To obtain further results on the index function, we investigate in more detail what

happens in the situation of (vi) in (9.18). We fix a non-degenerate bundle L and an ample

bundle H. As remarked above, ample bundles have index 0; in other words: they are effective.
Set | = ¢1(L) and h = ¢;(H). Consider the homogeneous polynomial of degree g

P(s,t) := (sl +th)? €Z[s,t],

whose coefficients are intersection numbers. Notice that P(m,n) = g!- x(L™ @ H™) for all
integral m and n. Further note that P is homogeneous of degree g, so P(m,n) = m9P(1,n/m) =
g'mI P, g(n/m) where ®r g is the Hilbert polynomial of L with respect to H. In other words:
P is “the Hilbert polynomial made homogeneous of degree ¢”. If we want to indicate which
bundles L and H we are working with then we use the notation Py, g. For later use let us remark
that

PLm7H(S,t) :PL7H(ms,t) :mg-PLH(s,t/m) (15)

for all integers m # 0.

(9.22) Proposition. Suppose that both L and L @ H are non-degenerate, and that i(L) #
i(L ® H). Then P(1,t) has a root in the interval [0,1] C R.
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Proof. Let M be a square not divisible by char(k). By (iv) of (9.18) we have
i(LM) =4i(L) #i(L ® H) = i(L™ @ HM).

Assume that P(1,t) does not vanish on [0, 1], so that there exists a constant C' > 0 with
|P(1,t)] > C for all t € [0,1]. As degenerate line bundles have zero Euler characteristic this
implies that all line bundles LM @ H™ with 0 < n < M are non-degenerate. Let n be the
smallest positive integer such that i(L™ @ H*~1) # (L™ @ H"). Set

i1 =1i(L) :i(LM) —_— . = i(LM ®Hn—1)
ig = i(LM ® H™),

and observe that iy < iy by (vi) of (9.18).
Choose an effective divisor D € |H| and consider the short exact sequence

0—LMeoH" ' —ILMoH" — (LM @ H"))p — 0.
Looking at the associated long exact cohomology sequence and using that i1 > i5 we find that
H?(X, LM @ H") — H"*(D,LM ® H").

In particular, h’2(D, LM @ H™) > M9 - |P(1,n/M)|, which by our choice of C is at least
M9 - C. Since this holds with arbitrarily large M, and since D has dimension g — 1, we obtain
a contradiction with (9.20). O

(9.23) Corollary. If L is non-degenerate then i(L™) = i(L) for all m > 0.

Proof. Write L = H; ® Hy ! as the difference of two ample bundles. Choose M > 2 big enough
such that both polynomials Py, g, (1,¢) and Py, g,(1,t) have no zeroes in the interval [0,1/M],
which is possible since Pp g, (1,0) = g!- x(L) # 0. By (15) it follows that for m > M both
Prm g, (1,t) and Prm g, (1,t) have no zeroes in the interval [0, 1]. By the proposition this implies

i( L™ = (L™ @ Hy) = i(H" ™ @ Hy ™) = i(L™ @ Hy) = i(L™).

Hence for large enough m the index of L™ is independent of m. Using properties (i) and (iv)
in (9.18) the corollary follows. O

(9.24) Lemma. Let L be non-degenerate, H ample, and let P(s,t) := P, g(s,t) be the poly-
nomial defined above. Suppose P(1,t) has a unique root T € [0, 1], of multiplicity  and with
7#1. Theni(L) <i(L® H) + p.

Proof. As Ppm gm(s,t) = m?9 - Pp, (s, t) we may assume, using (9.23), that H is very ample.
Also we may assume that i(L) # i(L ® H), so that also i(L™) # (L™ @ H™) for all m # 0.
Let m € Z~g and n € Z with n < m. In the rest of the proof we shall only consider
integers m which are coprime with all denominators of rational roots of P(1,t). This ensures
that L™ ® H™ is non-degenerate; indeed, if L™ ® H™ is degenerate then P(1,n/m) = 0.
With m and n as above, suppose that i(L™ @ H""1) # (L™ ® H™). Note that

n—1+4+1t
PLm®H"_1,H(17t) = mg 'PL7H(1, T),
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so it follows from (9.22) that P(1,t) has a root in the interval [(n — 1)/m,n/m|. By the
assumptions of the lemma we conclude that for given m > 0 there is a unique n with 1 <n < m
(depending on m) such that

i(L™) = =i(l™@H" ) > i(lm@H") = =i(L™ @ H™). (16)

Let X =: Zyg D Z1 D Zs D --- be obtained by taking hyperplane sections for the projective
embedding given by H. So, Z; C X is a hyperplane section, Z5 is a hyperplane section of 77,
etc. We have exact sequences

0— (L"@H" ")z, — (L™ @ HY)z, — (L™ © H)z,,, — 0. (17)

Fix m > 0 and let n = n(m) < m be determined by (16). Set i; := i(L) = i(L™) and
io :=i(L® H) =14(L™® H™). Note that iy > i and i(L"™ ® HY) > i; for all ¢ < n— 1. Similar
to what we did in the proofs of (9.20) and (9.22), we shall use the exact sequences (17) to obtain
dimension estimates for cohomology groups. As a first step, take » = 0 in (17). Since iy < 41
we find that H?2(X, L™ @ H™) injects into H*2(Zy, L™ ® H™) and that H7(Z;,L™ @ HY) = 0
for all j <43 —1 and ¢ < (n—1). Next we want to take r = 1, in which case we have the exact
sequence

Hiz(Zl,Lm ®Hn—1) N HiZ(ZhLm ®Hn) N HiZ(Z27Lm ®Hn)

Applying the previous conclusions we see that the first term vanishes if i < ¢; — 1. If this holds
then H®(Z;, L™ @ H") injects into H*2(Zy, L™ @ H™); further we then find that H’(Z2, L™ @
H?) =0forall j <i;—2andg<(n—1).

Proceeding by induction we find that if r < 41 — iy then

H%(Z,_1,L™ ® H") — H"(Z,,L™ @ H")

and
H(Z,,L™® H?) =0 for all j <i; —r and ¢ < (n —1).

(The induction breaks down for r > i; — i5.) The conclusion of this (terminating) induction is
that H (X, L™ @ H™) maps injectively to H*(Z;, _;,, L™ ® H™). Comparing dimensions and
using (9.20) we find that there exists a constant C' such that

|m? - P(1,n/m)| < C - ‘mg_(il_i2)| (18)

for all sufficiently large m. Here n = n(m) < m is a function of m.
Next we write P(1,t) = (t — 7)" - R(t) where R(t) does not have roots in [0,1]. Choose a
constant C’ > 0 with |R(t)| > C’ for all t € [0, 1]. Combined with (18) this gives

" (n/m — 1) < |P(1,n/m)| < C - [m~G1=2)| 19)

for all sufficiently large m.

To finish the argument we distinguish two cases. First assume that 7 € Q. Let f be its
denominator. Recall that we only consider integers m that are coprime with f. For all such m
and all 1 < n < m we have |n/m — 7| > 1/fm. Using this in (19) and letting m get large
we find the desired estimate i1 < io + p. Similarly, if 7 is irrational then it suffices to show
that there is an infinite sequence of values for m, say my,ms,..., and a constant C” such that
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|nj/m; — 7| = C”/m; for all j. (Note that the n’s are still a function of the m’s, determined by
the rule that 7 lies in the interval [(n —1)/m,n/m].) This is achieved by a theorem of Kronecker
which says that the fractional parts of the numbers m - 7, for m € N, lie dense in the interval
10,1[; see Hardy and Wright [1], Chap. 23. O

After all these preparations we are now ready for the main result about the relation between
the index and the Hilbert polynomial of L.

(9.25) Theorem. (Kempf-Mumford-Ramanujam) Let L be a non-degenerate line bundle on
an abelian variety X. Let H be an ample line bundle on X and write ®(t) € Z][t] for the Hilbert
polynomial of L with respect to H. (So ®(n) = x(L ® H™) for all n.) Then all complex roots
of ® are real, and the index i(L) equals the number of positive roots, counted with multiplicities.

Proof. Writing P(s,t) = (sl +th)? for the 2-variable polynomial as introduced before (9.22), we
have ®(t) = P(1,t)/g!. For the rest of the proof we may therefore work with P(1,¢). Notice
that this is a polynomial of degree g.

Let 71,...,75 be the real roots of P(1,t), say with multiplicities pu1, ..., us, respectively.
(It will be clear from the arguments below that h > 0.) Choose m € Z-( and nq,...,n, € Z
such that 7; lies in the interval [(nj; —1)/m,n;/m]. We can make these choices such that P(1,t)
has no roots of the form n/m, so that all bundles L™ ® H™ are non-degenerate.

For n >> 0, say n > N», the bundle L™ ® H™ is ample, so that i(L™ ® H™) = 0. Similarly,
for n < Ny the bundle L™ ® H™ is anti-ample, in which case i(L™ ® H™) = g. (That h > 0 is
now clear from (9.22).)

Applying Proposition (9.22) and Lemma (9.24) we find that for every n € Z,

either: P(1,t) has no root in the interval [(n — 1)/m,n/m] and i(L™ @ H"~1) = i(L™ @ H"),

or: n =n; (for some j), and P(1,t) has a unique root in [(n — 1)/m,n/m], of multiplicity
py; in this case (L™ @ H™ 1) <i(L™ @ H™) + p;.

index increases index stays
W(L™QHN1)=¢g by at most u; constant (L™ ®HN2)=0
l — — !
1 1 1 1 ce 1 1 1 1
Nl Uz —1 T nj H/_/ N2
meT; no roots

Starting at n = Ny and descending in steps of length 1 we find

g =1(N1) —i(Ng) Zu]

On the other hand, as P(1,t) has degree g we have ) ;15 < g. The conclusion is that we have
equality everywhere: P(1,t) has all its roots real and i(L™ @ H™ ™) = i(L™ @ H™) + u; for
all j. This also gives that

i(L) = i) =L @ H) = 3 ;.

357 >0
and the theorem is proven. O
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(9.26) Corollary. Let f: X — Y be an isogeny. If L is a non-degenerate line bundle on Y
then i(L) = i(f*L).

Proof. Choose and ample line bundle H on Y. By (9.12), the Hilbert polynomial of f*L with
repsect to the ample bundle f*H is just deg(f) times the Hilbert polynomial of L with respect
to H. Now apply the theorem. O

The reason that in (9.25) we restrict ourselves to non-degenerate bundles is that only for
such bundles the index is well-defined. Without this restriction we still have a quantative result,
though.

(9.27) Theorem. Let L be a line bundle on an abelian variety X over a field k. Let H be an
ample line bundle on X and write ®(t) € Z[t| for the Hilbert polynomial of L with respect to H.
Then the multiplicity of 0 as a root of ® equals the dimension of K(L).

Proof. Write Y := K (L)% ,, which is an abelian subvariety of X. There exists an abelian
subvariety Z C X such that the homomorphism v: Y x Z — X given by (y,2) — y + z is an
isogeny; see Exercise 77 or Theorem (12.2) below. Let M := (v*L)|{0}xz- Note that M is a
non-degenerate bundle on Z. We claim that v* L differs from p7, M by an element in Pic(()yX Z) k-
Indeed, if we let N := v*L ® py M~" then K(N) contains both {0} x Z (because Njgo1xz is
trivial) and Y x {0} (because Ny} = L)y and Y C K(L)); hence K(N) =Y x Z, which
by Cor. (7.22) means that the class of N lies in Pic?YXZ)/k. Writing [ = ¢; (L) and m = ¢; (M)
we therefore have v*l = pj,m. Let ¢ = dim(X) and s = dim(Z), and write h = ¢;(H). Using
Corollary (9.12) we find

deg(v) - ®(t) = deg(v) - (I +t-h)? = (v* (I + th))g = (pym+t- V*h)g

since m? = 0 if j > s = dim(Z). Moreover, m*® # 0 because M is non-degenerate; and because
v*h is an ample class then also (pfm)®- (v*h)9~° # 0. This shows that ®(¢) is exactly divisible
by t975. (]
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Chapter X. Tate modules, p-divisible groups, and the fundamental group.

If X is an abelian variety over the complex numbers, the associated analytic manifold can be
described as a complex torus V/A, with V' a C-vector space and A C V' a lattice. Topologically
this is a product of spheres, and the fundamental group can be identified with A = Z29 (with
g = dim(X)). Many properties of X can be expressed in terms of this lattice, and in fact we see
that A together with the complex structure on V = A ®7 R completely determines X.

Over an arbitrary ground field, we can no longer naturally associate a lattice of rank 2g
to a g-dimensional abelian variety (see 77), and we have to look for a substitute for A. The
starting point is the remark that, over C, the fundamental group is also the group of covering
transformations of the universal covering of X, and its pro-finite completion classifies the finite
coverings of X. Analytically, such finite coverings can be described as V/A" — V/A where
A’ C A is a subgroup of finite index; the covering group is then A/A’. In particular, one finds
that any finite covering is dominated by a covering of the form [n]x: X — X (which corresponds
to taking A’ = nA), which has covering group isomorphic to the n-torsion subgroup X[n] C X.
This leads to a description of the pro-finite completion of 71(X,0) as the projective limit of the
finite groups X|n]. (Cf. Cor. (10.37).)

Finite coverings of X, as well as torsion points of X, can be studied over arbitrary ground
fields. Restricting to the ¢-primary part, for a prime number ¢, we are led to consider the so-
called Tate-f-module Ty X of X, which is a good ¢-adic analogue of the fundamental group, and
which can be defined in elementary terms. These Tate modules turn out to be very useful, and
will play an important role in the study of endomorphisms.

If the ground field has positive characteristic p then the Tate-p-module of X has a somewhat
different structure than the T,X for £ # p, and there is another object, called the p-divisible
group, that contains finer information. This p-divisble group, denoted X [p*°], will be introduced
in the second paragraph.

In the second half of the chapter we give a brief introduction to Grothendieck’s theory of
the algebraic fundamental group. We then compute the (algebraic) 71 of an abelian variety, and
show that it can indeed be expressed—as already suggested above—in terms of Tate modules.

Throughout this chapter we work over a field k. We let ks denote a separable closure of k£ and
k an algebraic closure. The letter £ is reserved for a prime number different from char(k).

§1. Tate-f-modules.

(10.1) Let X be a g-dimensional abelian variety over a field k. Let £ be a prime number different
from char(k). As we have seen in (5.9) the group scheme X [("] has rank ¢2"9, and since this is
not divisible by char(k), Cor. (4.48) shows that X[¢"] is étale-étale.

In (3.26) we have seen that a finite étale group scheme is fully described by its group of
ks-valued points equipped with its natural action of Gal(ks/k). In the case of X [¢"] this means
we have to look at the group X [¢"](ks) of £"-torsion points in X (k), equipped with its natural
Galois action.

TateBT, 8 februari, 2012 (635)
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Multiplication by £ on X induces a homomorphism of group schemes ¢: X [¢" 1] — X[¢"].
Under the correspondence of (3.26) it corresponds to the homomorphism of abstract groups

TateBT:1X1n O X[ (ks) — X[ (k) (1)

which is Gal(k,/k)-equivariant. For varying n these maps make the collection {X[¢"](ks)}

n€Z>0
into a projective system of abelian groups with Gal(ks/k)-action.

T1xDef (10.2) Definition. Let X be an abelian variety over a field k, and let ¢ be a prime number dif-
ferent from char(k). Then we define the Tate-¢-module of X, notation T; X, to be the projective

limit of the system {X ["] (k:g)} with respect to the transition maps (1). In other words,

n€lxo
T,X = lim ({0} <& X[6] (ko) <& X[E2)(k,) <= X[E](k,) <= ).
If char(k) = p > 0 then we define

Ty X =1l ({0} = X[p|(F) & X[p?)(R) = X[ (F) & ).

In concrete terms this means that an element of 7, X is a sequence =z = (0, z1, x2,...) with
xn, € X(ks) an ¢™-torsion point, and with ¢ - z,; = z, for all n. The addition on T, X is
done coordinatewise, and if we have an f-adic number a = (ag, a1, as, ...) with a; € Z/{*Z and
a;y1 mod £* = a;, then a - x = (0,a121, asws, .. .).

In practice we often simply call T; X the Tate module of X, especially when the choice of £
plays no particular role.

Note that for ¢ # char(k) we get the same module 7, X if in the definition we replace
X[0"](ks) by X[¢"](k); see Prop. (5.11). In fact, we prefer to state the definition using the
separable closure kg, as we usually want to consider T, X with its natural action of Gal(ks/k);
see below. For the definition of T, ¢¢ X, it does make a difference that we work with torsion
points over k (and not k,); see (5.24).

Though the definition of T}, ¢ X is perfectly analogous to that of T; X, this “Tate-p-module”
is not really a good analogue of the Tate-f-modules. This is why we use a slightly different
notation for it. See further the discussion in § 2.

T1XBasics (10.3) It follows from (5.11) that 7,X is (non-canonically) isomorphic to

lim<{0} Lozpmy Lz Loz L ) — 7%

In other words, T; X is a free Zs-module of rank 2g. We also introduce
VX =T X ®z, Qu,

a Qg-vector space of dimension 2g.
But 7} is not just a Zy-module. We have a natural action of Gal(ks/k) on the projective
system {X [0"] (ks) }, and this gives rise to an integral ¢-adic representation

Pe: Gal(ks/k:) — GL(TKX) .
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We refer to Appendix 77 for some basic notions on f-adic representations. If there is no risk of
confusion we use the same notation p, for the ¢-adic representation with values in GL(V,X).

Note that we can find back the group scheme X[¢"] from T, X with its Galois action, since
T, X/0"T; X = X[("](ks). Therefore, knowing the Tate-f-module with its action of Gal(k/k) is
equivalent to knowing the full projective system of group schemes X [¢"].

(10.4) The group Q/Z;y is the union of its subgroups ¢~ "Zy/Z. Phrased differently, Q,/Z, is
the inductive limit of the system {Z/¢"Z},>¢, where the transition maps are the homomorphisms
Z.J0"7 — Z./0" 17 given by (1 mod £") — (£ mod £"+1),

The definition of the Tate-¢-module may be reformulated by saying that

T;X = Hom(Qq¢/Z¢, X (ks)) ,
where we take homomorphisms of abstract groups. Indeed,

Hom (Q¢/Z¢, X (ks)) = Um Hom (Z/0"Z, X (k,)) = Hm X[¢"] (k)

where in the last term the transition maps are given by multiplication by ¢. Concretely, if
(0,21, x3,...) with z,, € X[0"](ks) is an element of T;X then the corresponding homomorphism
Q¢/Zy — X(ks) sends the class of 7" to x,,. In this description the Gal(k/k)-action on T, X
is induced by the Galois action on X (k).

(10.5) A homomorphism f: X — Y gives rise to a Zs-linear, Gal(ks/k)-equivariant map
Tyf: T;X — TyY. It sends a point (0,z1,s,...) of T;X to the point (0, f(z1), f(z2),...)
of TgY.

Suppose f is an isogeny with kernel N C X. Applying Hom(Q,/Z,, —) to the exact sequence
0 — N(ks) — X(ks) — Y (ks) — 0 we obtain an exact sequence

0 — TuX —5 T,y — Ext!(Qu/Z¢, N(ks))

2
— Eth (Qg/Zg,X(k‘g)) — Eth (QZ/Zéa Y(ks)) ) ( )

where the Ext terms are computed in the category Ab of abelian groups.

Let us first try to understand the term Ext (Qg/Zg, N(k:s)). We use that if A and B are
abelian groups, multiplication by an integer n on Ext'(A, B) equals the map induced by [n]4
(multiplication by n on A), and also equals the map induced by [n]g.

Write N = N; x N* with Nt a group scheme of order prime to £ and N, a group scheme of
¢-power order. If m is the order of N* then multiplication by m kills N*(k,) but is a bijection
on Q¢/Z,. Hence

B! (Qz/Zb N(ks)) — Pt (Qg/Zzy Nz(ks)) x Ext! (Qz/Z[, Nf(k:s))
= Ext! (Qe/ZE,NE(k’s)) .

Next consider the long exact sequence

- — Hom(Qy, Ny(ks)) — Hom(Z, Ny(ks))

— Eth(Qg/Zg,Ng(ks)) — Ext! (QéaNé(ks)) — ... (3)

For a sufficiently big Ny(ks) is killed by ¢%, so multiplication by ¢* induces the zero map on
all terms in (3). On the other hand, multiplication by ¢ is a bijection on Q, and therefore
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induces an bijection on the terms Ext’ (Qg,Ng(k‘s)). Hence the terms Hom(Qg,Ng(k:S)) and
Ext? (Qg, Ng(k‘s)) vanish, and the conclusion is that

Ext" (Q¢/Zq¢, N (ks)) = Hom(Z, No(ks)) =2 Ny(ks) . (4)

Write E'(f): Ext! (Qg/Zg,X(k‘s)) — Ext! (@g/Zg,Y(k‘S)) for the map induced by f. We
claim it is injective. If the ground field k is perfect, so that ks = k, then we know from
Cor. (5.10) that X (ks) is a divisible group, and is therefore an injective object in the category
of abelian groups. Hence in this case Ext! (Qg [Zy, X (k:g)) = 0. In the general case, we first
choose an isogeny ¢g: Y — X such that go f = [n|x for some positive integer n. Then E(go f) is
multiplication by n on Ext'(Q/Z, X (ks)). Now write n = ™ - n/ with £ { n’. Multiplication
by n’ is a bijection on Q/Z; so it suffices to show that E(¢™) is injective. But if we take
f = £™ then the sequence (2) becomes

0 — T,X <5 T,X -5 Bxt! (Qu/Ze, X[0)(ks))

El (e'm)
E——

— Ext! (Q¢/Ze, X (k) Ext' (Q¢/Z¢, X (ks))

and it follows from (4) that ¢ is surjective. This proves our claim.
Finally we remark that the maps in (2) are equivariant for the natural Galois actions on all
terms. To summarize, we have the following conclusion.

(10.6) Proposition. Let f: X — Y be an isogeny of abelian varieties over a field k, with ker-
nel N. If ¢ is a prime number with ¢ # char(k) then we have an exact sequence of Z;[Gal(k,/k)]-
modules

0— TX 25 Ty — Ny(ky) — 0

where Ny(ks) is the ¢-Sylow subgroup of N (k).

(10.7) Corollary. If f: X — Y is an isogeny then for all £ # char(k) the induced map
Vif: VoX — V4Y is an isomorphism.

(10.8) The construction of the Tate module makes sense for arbitrary group varieties. Thus, if
G is a group variety over k and ¢ # char(k) then we can form

TG = lim ({0} <= Gl (k) <= GIE)(ks) <= GIE] (k) <= ).

In some cases the result is not very interesting. For instance, TyG, = 0. But the Tate module of
the multiplicative group G,, is a fundamental object; so much so that it has a special notation:
we write

o - ()" ()" ()" ()"
Zy(1) :=TyGy, = lim ({1} —— po(ks) «—— ppz(ks) —— pps (k) —— -+ ).

(In this case we of course use multiplicative notation.) As a Zy-module, Z,(1) is free of rank 1.
The action of Gal(ks/k) is therefore given by a character

Xe: Gal(ks/k) — Zg* = GL(Zg(l)) s
called the /-adic cyclotomic character.
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As discussed in Appendix 77, if T is any f(-adic representation of Gal(ks/k) then we de-
fine T'(n), called “T" twisted by n”, to be

T Rz, Zg(l)(gm ifn>0,
T Rz, Zg(—1)®_n if n <0,

where Z¢(—1) := Z;(1)" and Z(1)®° is defined to be Z, with trivial Galois action. Concretely, if
p is the Galois action on T" then T'(n) is isomorphic to T" as a Z,-module, but with o € Gal(ks/k)
acting via x¢(o)" - p(o).

(10.9) Proposition. We have a canonical isomorphism

T, X"~ (T, X)"(1).

Proof. By Thm. (7.5) we have X*[¢("] = X[¢"]P, and therefore

X0 (k) 2 Hom (X[07) (k) k2 ) = Hom (X[€)(ks), pen (k) )

»rs

as groups with Galois action. Now take projective limits. O

§2. The p-divisible group.

If char(k) = p > 0 then the “Tate-p-module” T}, 4 X is in many respects not the right object
to consider. For instance, whereas T;X (for ¢ # char(k), as always) has rank 2g over Z,
independent of ¢, the rank of the module T}, . X equals the p-rank of X, and as we know this is
an integer with 0 < f(X) < g. In particular, T}, ¢, X could be zero.

We have seen that the Tate-¢-module captures the full system of group schemes X [¢"]. That
this system can be encoded into a single Z,-module with Galois action is due to the fact that
X[0™] is étale for every n. So we should really consider the full system of group schemes X [p"].
It turns out that it is most convenient to put these into an inductive system, and in this way
we arrive at the p-divisible group of an abelian variety.

Let us now first give the definition of a p-divisible group in a general setting.

(10.10) Definition. Let S be a base scheme. A p-divisible group over S, also called a Barsotti-
Tate group over S, is an inductive system
{Gn; in: Gy — G”+1}n€N’ in other words: Gj M, Go N Gs BN ,
where:
(i) each G,, is a commutative finite locally free S-group scheme, killed by p™, and flat when
viewed as a sheaf of Z/p"Z-modules;
(ii) each i,: G,, — Gp41 is a homomorphism of S-group schemes, inducing an isomorphism
Gp — Gnr1p"].
Homomorphisms of p-divisible groups are defined to be the homomorphisms of inductive
systems of group schemes.
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The flatness condition in (i) of the definition can be rephrased in more elementary terms,
as in the following lemma.

(10.11) Lemma. Let S be a scheme. Let p be a prime number. If H is an fppf sheaf of
Z/p™Z-modules on S then the following are equivalent:

(i) H is flat as a sheaf of Z/p"Z-modules;

(ii) Ker(p') = Im(p™~?) for all i € {0,1,...,n}.

Proof. We closely follow Messing [1], Chap. I, § 1. For (i) = (ii), start with the exact sequence
Z/p"Z X )2 2 1L
If H is flat over Z/p"Z then — ® H gives an exact sequence
HY S H H (5)

and we see that (ii) holds.

For the proof of (ii) = (i) we use some results of Bourbaki [2]. These results are stated in
the context of modules over rings, but they carry over (with the same proofs) to the setting of
sheaves.

We use the flatness criterion, loc. cit., Chap. III, § 5, Thm. 1 together with ibid., Prop. 1.
This tells us that H is flat over Z/p™Z if and only if the following two conditions hold:

(a) H/pH is flat as a sheaf of Fp-modules;
(b) Tor”?"%(7/p'Z, H) = 0 for all i > 0.
But (a) is trivially true, as F, is a field. To see that (b) holds, start with

0 — Z/p" " 'Z 2, Z/p"7 — Z/p'7 — 0.
This gives a long exact sequence
0 — Tor?"" 2(Z)p'Z, H) — H/p""H 2> H — H/p'H — 0.

But assumption (ii), equivalent to the exactness of (5), says precisely that p’: H/p"*H — H is
injective. O

(10.12) Let {G,;in} be a p-divisible group over S. If m and n are natural numbers then the
composition

7;'m,Jrl iwz«knfl

N iT’L
tm,n: Gm E—— Gm+1 Gm+n

gives an identification G,, — Gpin[p™]. Hence we may view G,, as a subgroup scheme
of Gy

On the other hand, since G, is killed by p™*™ the map [p™]: Gpin — Gmin factors
through Gy, [p"] = G,. If there is no risk of confusion we simply write p": G4, — G, for
the induced homomorphism. By Lemma (10.11) this last map is an epimorphism. Hence the
sequence

tm,n

0—>Gm—>Gm+np—m>Gn—>0 (6)

is exact.
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(10.13) Given a p-divisible group as in the above definition, we may consider the G,, as fppf
sheaves on S and form the limit
G :=1lmG,,

n

in the category of fppf sheaves of abelian groups. We can recover G,, from G by G,, = G[p"].

If {Gn} and {Hn} are two p-divisible groups and we form G := lim G,, and H := lim H,,
then the homomorphisms from {Gn} to {Hn} are just the homomorphisms from G to H as
fppf sheaves. In other words, by passing from the inductive system {Gn} to the limit G we can
identify the category of p-divisible groups over S with a full subcategory of the category of fppf
sheaves in abelian groups over S.

An fppf sheaf G is (or “comes from”) a p-divisible group if and only if it satisfies the
following conditions:

(i) G is p-divisible in the sense that [p]g: G — G is an epimorphism;
(ii) G is p-torsion, meaning that G’ =lim GI[p"];
(iii) the subsheaves G[p"] are representable by finite locally free S-group schemes.

To go back from a sheaf G satisfying these conditions to a p-divisible group as defined
in (10.10), take G,, := G[p"], and let i,: G, — Gp4+1 be the natural inclusion. It follows
from (i) that [p"]¢ is an epimorphism for all n, and this implies that for all m and n we have
an exact sequence as in (6). By Lemma (10.11), we conclude that each G, is flat as a sheaf of
Z/p"Z-modules; hence the system {G,;iy}, is a p-divisible group. As a further simplification,
it can be shown that it suffices to require (iii) for G|[p|; see Messing [1], Chap. I, § 1.

We can go one step further by remarking that, as a consequence of (ii), a p-divisible group G
has a natural structure of a sheaf in Z,-modules. More concretely, suppose we have a p-adic
number a = (a1, as, ...) with a; € Z/p‘Z. Then a acts on G,, as multiplication by a,,; this gives
a well-defined Z,-module structure on the limit G because the diagrams

Gny1r —— Gota
An 41
are commutative. Homomorphisms of p-divisible groups are automatically Z,-linear. In partic-
ular, Hom(G, H) has a natural structure of a Z,-module.

(10.14) Remark. The name “p-divisible group” refers to condition (i) in (10.13). But we see
that the requirement for an fppf sheaf G to be a p-divisble group in the sense of Def. (10.10) is
stronger than only this condition. Thus, strictly speaking the terminology “p-divisible group” is
not correct. This is one of the reasons that some prefer the terminology “Barsotti-Tate group”,
after two of the pioneers in this area.

(10.15) If G = lim G,, is a p-divisible group over a connected base scheme S then, by definition,
the group scheme G is locally free and killed by p. It follows that the rank of G equals p” for
some integer h. (Use Exercise (4.4).) This integer h = h(G) is called the height of G. It readily
follows from (6) and Lemma (4.46) that G,,, which is again locally free, has rank p™".

Over an arbitrary basis S, we define the height of a p-divisible group G as the locally
constant function |S| — Zx¢ given by s — h(G(s)).

— 147 -



BTAVDef

fpinftyDef

SerreDual

BTXt

GmhatDef

(10.16) Definition. Let X be an abelian variety over a field k. Let p be a prime number.
Then we define the p-divisible group of X, notation X [p], to be the inductive system

{X[pn]}n>o

with respect to the natural inclusion homomorphisms X [p"] — X [p"+1].

Note that X [p°°] has height 2g, where g = dim(X).

(10.17) A homomorphism f: X — Y of abelian varieties over k induces a homomorphism
fIp™]: X[p>*] — Y [p>] of p-divisible groups.

If we take f = [n]x for some integer n then the induced endomorphism of X[p>] is mul-
tiplication by m, which for n # 0 is surjective (as a homomorphism of fppf sheaves). Using
Prop. (5.12) it follows that if f is an isogeny then f[p°°] is an epimorphism of fppf sheaves.
Hence if f is an isogeny with kernel N we find an exact sequence of fppf sheaves

N X[p> flp™] Vip™
0— N, — X[p*] —= Y [p*] — 0,
where we write N = N, x NP with N,, of p-power order and N? a group scheme of order prime
to p.

(10.18) Let us return to the general context of a p-divisible group G over a base scheme S.
Applying Cartier duality to (6) gives an exact sequence
O—>G£—>Gﬁ+n—>Gﬁ—>O.

In particular, taking m = 1 this gives homomorphisms ¢,,: G? — GP 1. The inductive system
{GE ; Ln} is again a p-divisible group; it is called the Serre dual of G.

A homomorphism f: G — H induces a dual homomorphism fP: HP? — GP; in this way
G — GP gives a contravariant functor from the category of p-divisible groups over S to itself.
The collection of isomorphisms (G2)P = G,, give a canonical isomorphism (GP)P = G.

It is immediate from the defnitions that the Serre-dual of G' has the same height as G.

(10.19) Proposition. If X/k is an abelian variety then we have a canonical isomorphism
}Ki[poo]gz )([pooyD

Proof. Immediate from Thm. (7.5) and the definition of the Serre dual. O

(10.20) Like the construction of a Tate module, the definition of a p-divisible group also makes

sense for certain other commutative group varieties. Beyond abelian varieties, the main example
of interest is the p-divisible group G,,[p>] associated to G,,. By definition, G,,[p*>] is the
inductive system of group schemes pi,» with respect to the natural inclusions pyn — pryne1. If
we work over a field k and view G,,[p™] as an fppf sheaf on Spec(k) then we have

Gm[poo](R) = {33 € R* ! 2P" =1 for some n > 0}7
for any k-algebra R. The height of G,,[p*] is 1.
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The Serre-dual of G, [p*] is the p-divisible group Q,/Z,, i.e., the inductive limit of constant
group schemes Z/p"Z with respect to the inclusion maps Z/p"Z — pZ/p"*'Z C Z/p" ' Z.

(10.21) As we have seen in Prop. (4.45), a finite commutative group scheme over a field k is, in
a canonical way, an extension of an étale group scheme by a local group scheme. An immediate
consequence of this is that any p-divisible group G = lim G, over k is an extension

1 — Gloe — G — Ggg — 1 (7)

of the “ind-étale” p-divisible group Gg; = lim G, ¢ by the “ind-local” p-divisible group Gloc =
lim G, 10c- To simplify terminology, the prefix “ind-” is often omitted; e.g., G is called an étale
p-divisible group if G = Gg;.

If k is perfect then the sequence (7) splits. See Exercise (10.1).

Combining the above with the Serre-duality functor G +— GP of (10.18), we can further
decompose Gioc as an extension of a local-local p-divisble group by a local-étale one. Here we
extend the terminology introduced in (4.42) in an obvious way to p-divisible groups. Similarly,
G is an extension of an étale-local p-divisible group by an étale-étale one.

(10.22) If G is a p-divisible group over k, viewed as an fppf sheaf, then we define its Tate-p-
module by 7,,G := Hom (Qp /Ly, G(E)) Concretely, we take the limit of the projective system

1,2 1,3

Gi(ks) < Go(ks) 2 Ga(ky) 2 -

As usual, T,,G is a Z,-module that comes equipped with a continuous action of Gal(ks/k).
It is clear from the definitions that 7,G only sees the étale part of G, i.e., the canonical
map T,G — T,G¢ is an isomorphism. It follows that 7,,G is a free Z,-module of rank h(Gst).
If p # char(k) then clearly the Tate module of X[p™] is the same as the Tate-p-module
of X as defined in (10.2). The Tate module of G,,[p>] is Z,(1).

(10.23) Thus far we have not made any assumptions on the prime p in relation to the char-
acteristic of the ground field k. But if p # char(k) then it follows from Prop. (4.47) that any
p-divisible group G over k is étale-étale. More precisely, G is non-canonically isomorphic to
(Q,/Z,)"%). In this case it is an easy exercise to show that the functor G — T,G gives an
equivalence from the category of p-divisible groups over £k to the category of free Z,-modules
of finite rank equipped with a continuous action of Gal(ks/k). This functor is compatible with
duality, in the sense that T),(GP) is canonically isomorphic to (7,G)Y(1).

In sum, for p # char(k), a p-divisible group carries the same information as the correspond-
ing Tate module, and we typically work with the latter. (To stress that p # char(k) we shall use
the letter ¢ rather than p.) By contrast, if char(k) = p > 0 then a p-divisible group in general
contains finer information than the associated Tate module.

(10.24) To conclude this general section on p-divisible groups, let us discuss the relation with
formal groups. (??TO BE COMPLETED??)

§3. The algebraic fundamental group—generalities.
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In Topology one defines the fundamental group 71 (X, z) of a space X with base point z € X
as the group of homotopy classes (rel. {0,1}) of paths ~: [0,1] — X with 4(0) = (1) = .
Now suppose we want to define the fundamental group of an algebraic variety over an arbitrary
field. Working with the Zariski topology does not give reasonable answers—for instance, any
two algebraic curves over the same field are homeomorphic as topological spaces! Further, the
above topological definition via paths does not have an obvious “algebraic” analogue that works
well. (In fact, an algebraic analogue of homotopy theory was developed only in the 1990’s; see
Morel and Voevodsky [1].)

Assuming that X is locally connected and locally simply connected, an alternative descrip-
tion of 71 (X, x) is that it is the automorphism group of the universal covering X — X. See
for instance Massey [1] or Rotman [1]. In this description the fundamental group becomes the
group which classifies topological coverings of X. This is similar to Galois theory of fields, and it
was one of Grothendieck’s fundamental insights that it is possible to develop an abstract Galois
theory of which both are special instances. Using finite étale morphisms as coverings, this theory
also applies to algebraic schemes and gives rise to a notion of an algebraic fundamental group.

We shall now recall the definition of the algebraic fundamental group 71 (X, z), and some
basic properties. For further introduction we refer to SGA1. On a more advanced level, but
very readable, is Deligne [4], § 10. We shall write m; for the algebraic fundamental group and
use the notation 7r§°p for the fundamental group in the classical setting of topological spaces.

(10.25) Definition. Let X be a scheme. By an étale covering of X we mean a finite étale
morphism Y — X. (Do not confuse this with the notion of a covering for the étale topology.) We
write FEt,x C Sch,x for the full subcategory of such étale coverings. Note that the morphisms
in FEt,x are automatically again étale coverings. We say that an étale covering f: Y — X
dominates the étale covering ¢g: Z — X if there exists a morphism h: Y — Z with f = goh.

Fix an algebraically closed field Q2 and a geometric point z: Spec(2) — X. We define a
functor

Fz: FEt,x — Sets

by Fo(f:Y — X)={y € Y(Q) | f(y) = z}. In other words, F; associates to an étale covering
of X the set of geometric points lying over .

(10.26) Definition. (Grothendieck) Assume X to be locally noetherian and connected. Then
the algebraic fundamental group m (X, Z) is defined to be the automorphism group of the func-
tor Fj

(10.27) Example. Suppose X = Spec(k) is the spectrum of a field. The geometric point &
corresponds to an embedding o: kK — ). An étale covering of X is a finite disjoint union
of schemes Spec(L), where £k C L is a finite separable field extension. For such a scheme
Y = Spec(L) we have

F3(Y) = {embeddings 7: L < Q with 7, =o'} .

Write k; for the separable closure of k inside 2. Clearly, every element of Gal(ks/k) gives
an automorphism of the functor Fz. Conversely, if o € Aut(F;) and £ € ks then the inclusion
k(&) C Q gives an Q-valued point of Spec(k:(&)) lying above Z, in other words, an element
i € Fy(Spec(k(€))). Then (i) is another embedding of k(§) into € that extends o. Sending &
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to its image under «(i) defines an element of Gal(ks/k). These two constructions are inverse to
each other, so we find a canonical isomorphism of pro-finite groups

71 (Spec(k), z) = Gal(k,/k) .

Notice that the elements of wl(Spec(kz),i) do not directly appear as automorphisms of
the field k,. Rather, if o € ﬂl(SpeC(k‘),:Z‘) corresponds to 3 € Gal(ks/k) then a describes
the effect that § has on all embeddings L — ks (= the geometric points lying over Z in the
covering Spec(L) — X). So, to phrase it in a more topological way, the point here is that an
automorphism of the “universal covering” of X is completely determined by its effect on the
points in the fibre over the base point Z.

(10.28) Theorem. (Grothendieck) Assume X to be locally noetherian and connected. Then
m = m (X, &) is a pro-finite group, and F; induces an equivalence of categories

finite
FEt, x —
/X <7T1—Set8> ’

where the right hand side denotes the category of finite sets with a continuous action of 71 (X, ).

For the proof of this theorem we refer to SGA1, in particular Exp. V. Note that in case
X = Spec(k) we have already seen this result in (3.25).

From now on, whenever we consider an algebraic fundamental group, it is assumed that the
scheme in question is locally noetherian and connected.

We shall briefly review some basic properties of the fundamental group. Proofs may be
found in SGA1. Note that some of the results discussed below are ingredients of the proof of
Thm. (10.28), rather than being consequences of it.

(10.29) Dependence on the choice of a base point. Suppose we have two geometric points
Z1: Spec(21) — X and Zy: Spec(£23) — X; here the (algebraically closed) fields €2, and Q5 may
be different, and may even have different characteristics. The theorem implies that there is an

finite eq finite (8)
—
m1 (X, T1)-sets w1 (X, To)-sets )

Notice that this equivalence is not canonical, as it depends on the choice of a quasi-inverse of
the equivalence Fj,. Now it is not difficult to show that the equivalence in (8) is induced by
an isomorphism of topological groups 71 (X,Z1) — 71 (X, Z2). Hence up to isomorphism the
fundamental group of the (connected!) scheme X does not depend on the chosen base point.

As in topology, a more elegant way to express that the fundamental group does not depend
on the chosen base point is to work with the fundamental groupoid. See SGA1, Exp. V, sect. 5
or Deligne [4], § 10.

equivalence of categories

(10.30) Functoriality. Let f: Y — X be a morphism between connected, locally noetherian
schemes. Let § be a geometric point of Y, and write Z = f(y). Associating to an étale covering
X' — X its pull-back Y := (X' xxY) — Y gives a functor f*: FEtx — FEty, and F; = Fje f*.
In particular, every automorphism of the functor Fy induces an automorphism of Fz, and this
gives a canonical homomorphism

fo m(Y,g) = m(X, 7).
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If g: Z — Y is a second morphism then (fog). = fiogs.
If f: Y — X is an étale covering (still with X and Y connected and locally noetherian),
one shows that f, gives an isomorphism

Wl(}/,’g) i) Stab(gj) C 7T1(X,i‘),

where Stab(jj) is the stabilizer of the point 3 € f~!(Z) under the natural action of (X, Z)
on f~1(z). Indeed, if g: Z — Y is an étale covering of Y, then fog is an étale covering of X
and g71(y) C (fog) (7). If o € Stab(y) C m1(X,Z) then its natural action on (fog)~(Z)
preserves the subset g~!(); hence o induces an automorphism of the functor Fy. This gives a
homomorphism Stab(y) — m1(Y,y) inverse to f..

Conversely, if H C 7 := m(X,Z) is an open subgroup (equivalently, a subgroup of finite
index) then 7/ H is a finite set with a natural action of 7 by left multiplication, so by Thm. (10.28)
there exists an étale covering fr: Yz — X such that we have an isomorphism v: f;*(z) — 7/H
as m-sets. Since the m-action on m/H is transitive, Yy is connected. If we let § € f;'(Z)
be the geometric point with v(y) = (1 mod H) then Stab(y) = H as subgroups of m, and
the pair (Y,y) is uniquely determined up to isomorphism over X. In this way we obtain a
bijective correspondence between pairs (Y,¢) up to X-isomorphism (with connected Y) and
open subgroups of 71 (X,Z). As a variant, we may forget the choice of a geometric point y
above Z; then we get a bijective correspondence between connected étale coverings ¥ — X up
to isomorphism over X and conjugacy classes of open subgroups of 7 (X, Z).

(10.31) Geometric and arithmetic fundamental group. Let X be a geometrically connected
scheme of finite type over a field k. Let k, be a separable closure of k and write X := X xj, ks.
Choose a geometric point Z of X, and write Z’ for its image in X. Then there is an exact
sequence

1 — m(X,7) 25 (X, 7) 2 Gal(k, /k) — 1, (9)

where the homomorphisms are induced by the projection p: X — X and the structural morphism
s: X — Spec(k), and where we use the isomorphism of (10.27). If Z: Spec(2) — X factors
through a k-rational point x: Spec(k) — X then x,: Gal(ks/k) — 71 (X, Z) is a section of s,.

The group 71 (X, z) is referred to as the geometric fundamental group of X. The “full” fun-
damental group 71 (X, Z) is occasionally called the arithmetic fundamental group. If char(k) = 0
or if X is proper over k then 7 (X, ) does not change under extension of scalars to a bigger
separably closed field. More precisely, if L is a separably closed field containing ks such that z
lifts to a geometric point # of X xj L, then the natural map v: 7'8(X x L, #) — 72 8(X x 1 ks, T)
is an isomorphism. Note however that for char(k) > 0 and X not proper, v need not be an
isomorphism; see SGA1, Exp. X, Sect. 1.

Writing Out(n) := Aut(w)/Inn(7) for the group of outer automorphisms of a group m, the
exact sequence (9) gives rise to a homomorphism

Gal(ks/k) — Out(m (X, 7)) .

In the special case that & factors through x: Spec(k) — X, this naturally lifts (via the section x,)
to a homomorphism

Gal(ks/k) — Aut(m (X, 7)) .

(10.32) Comparison with the topological fundamental group. Let X be a variety over C.
Choose a base point € X(C). Let us write 7,°°(X,z) for the usual fundamental group
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of X(C) with its analytic topology. If Y — X is an étale covering then the induced map on
points Y(C) — X(C) is a finite topological covering (taking the analytic topology on both
sides). Since 7}°P (X, x) naturally acts on the fibre of Y (C) over x, we obtain a homomorphism

7 P(X,2) — 71 (X, 2). It can be shown that this map induces an isomorphism

(7P (X, )] = 7E (X, )

where the left hand side denotes the pro-finite completion of WEOP, that is, the projective limit of
all its finite quotients. The geometric content of this statement is that every finite topological
covering of X can be realised as an algebraic variety which is finite étale over X, and this
algebraic structure is unique up to isomorphism over X.

Note that W;OP(X,I‘) may not be residually finite, i.e., it may happen that the natural
homomorphism 7{°® — [r}°P]" is not injective. (For examples, see Toledo [1].) Geometrically
this means that the natural map from the universal covering X of X (in the context of topological
spaces) to the “algebraic universal covering” Xal8 obtained as the projective limit of all finite
étale coverings of X, is not injective.

(10.33) Galois coverings. As before, let X be a connected, locally noetherian scheme. Fix a
geometric base point z € X (). If we claim that the theory of the fundamental group can be
viewed as an abstract Galois theory, one may expect that certain étale coverings ¥ — X play
the role of Galois extensions.

Consider an étale covering f: Y — X with Y connected. Choose a base point § € Y (Q)
above Z. For simplicity of notation, write 7 := 71 (X, Z), and let H C 7 be the stabilizer of 5. As
discussed in (10.30), we have an isomorphism f,: 71(Y,9) — H, and we get an identification
7n/H = F5(Y) of finite sets with m-action. Write N := N,(H) C G for the normaliser of H.

Let G := Aut(Y/X) be the group of automorphisms of ¥ over X. Note that Y is affine
over X (as Y — X is finite), so any G-equivalence class in |Y'| is contained in an affine subset,
and there exists a quotient of Y by G.

By Theorem (10.28), G maps isomorphically to the automorphism group of Fz(Y') as a m-
set. Using the above description we readily find that the latter group is isomorphic to (IN/H )PP,
the opposite group of N/H. Indeed, if a € N/H then ¢,: 7/H — n/H given by gH — gaH is
a well-defined automorphism of 7-sets, any automorphism is of this form, and @@, = @ab-

We conclude that G is finite and that its natural action on F3(Y) is faithful. As this holds
for any choice of the base point Z, it follows that G acts freely on Y. Hence the morphism
Y — X factors as a composition of two étale coverings ¥ — (G\Y) — X. From the given
description of G we then see that the following conditions are equivalent:

(i) the group G acts transitively on Fz(Y);

(ii) the group G acts simply transitively on Fz(Y);

(iii) the natural map f: G\Y — X is an isomorphism, i.e., X is the quotient of Y under G

(iv) the subgroup H = f,m(Y,y) C m1(X, %) is normal.

If these conditions are satisfied we say that f: Y — X is a Galois covering with group G, and
we have an exact sequence of groups

I — 7T1(Y7 g) — 7T1(X,.f) — Aut(Y/X)Opp 1.

(Caution: we here only consider étale coverings. The terminology “Galois covering” is also used
in the context of ramified coverings.)
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Using condition (ii), it readily follows from Theorem (10.28) that every étale covering Z —
X with connected Z is dominated by a Galois covering.

Suppose we have étale coverings g: Z — Y and f: Y — X, where all three schemes are
connected and locally noetherian. Suppose h := fog: Z — X is a Galois covering. Then g is
a Galois covering, too. Further, f is Galois if and only if Aut(Z/Y) C Aut(Z/X) is a normal
subgroup, and if this holds then we have a short exact sequence

1 — Awt(Z/Y) — Aut(Z/X) — Aut(Y/X) — 1.

§4. The fundamental group of an abelian variety.

We now specialize to the case of an abelian variety. The key result of this paragraph is a theorem
of Lang and Serre which says that, for an abelian variety X, the finite étale coverings f: ¥ — X
with a rational point ey € f~1(ex) are precisely the separable isogenies with target X.

(10.34) Proposition. Let X be a complete variety over a field k. Suppose given a point
e € X(k) and a k-morphism m: X x X — X such that m(z,e) = x = m(e,z) for all x € X.
Then X is an abelian variety with group law m and origin e.

Proof. Let g := dim(X), and write z -y for m(x,y). Consider the morphism 7: X x X — X x X
given by 7(z,y) = (2 -y,y). (If the proposition is true then 7 is the universal right translation.)
We have 771(e,e) = {(e,e)}, so the image of 7 has dimension 2g. (We use a standard result
on the dimension of the fibres of a morphism; see HAG, Chap. II, Exercise 3.22.) As X x X is
complete and irreducible, it follows that 7 is surjective.

We reduce the problem to the case that k is algebraically closed. Namely, suppose m induces
a group structure on X (k), with origin e. Then for every = € X (k) the translation 7,: y +— z -y
is an automorphism of Xi- as a variety, and by the argument of Prop. (1.5) it follows that X
is non-singular. It also follows that 7 induces a bijection on k-valued points. Hence 7 gives a
purely inseparable extension on function fields. On the other hand, by looking at the restrictions
of 7 to {e} x X and X x {e} we see that the tangent map of 7 at (e, e) is an isomorphism. The
conclusion is that 7 is an isomorphism. Now define i: X — X by i(y) = p1 (7 '(e,y)). Using
that X is geometrically reduced and that we know the group axioms to hold on X (k), it follows
that m, ¢ and e define the structure of an abelian variety on X. Hence to complete the proof
of the proposition, we may assume that k& = k and it suffices to prove that m gives a group
structure on X (k).

Consider the closed subscheme I' C X x X given by I' := {(,y) ‘ z-y = e}. Then
I = T‘l({e} x X ), so the surjectivity of 7 implies that the second projection po: I' — X
is surjective. Let I'y C I' be an irreducible component with po(I'y) = X. Notice that T’y is
complete, and that dim(T';) > g. Further note that p;'(e) NT = {(e;e)} = py(e) NT; this
implies that (e,e) € T'y. Again by comparing dimensions it follows that p;: 'y — X is surjective,
too.

Define f: Ty x X xX — X by f((z,y), z,w) = 2+ ((y-z)-w). We have f(T'1 x{e}x{e}) = {e}.
Applying the rigidity lemma we find

v ((y-2) w) =z w for all (z,y) € Ty and z, w € X. (10)
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As a particular case, taking w = e, we have
x-(y-2)=z for all (z,y) € 'y and z € X. (11)

Now fix y € X(k). Choose any x € X (k) with (z,y) € I'1, and any z € X (k) with (y,z) € I';.
(Such z and z exist, as we have shown the two projections p;: I'y — X to be surjective.) Then
(11) gives x =z - (y - z) = z - e = z. The conclusion is that y has a unique left and right inverse
in X (k). Finally, multiplying (10) from the left by y = =, and using (11) gives

y-(zw)=y-(z-((y-2)-w) =(y-2)- w,
which shows that the group law on X (k) is associative. O

(10.35) Lemma. Let Z be a k-variety, let Y be an integral k-scheme of finite type, and let
f:Y — Z be a smooth proper morphism of k-schemes. If there exists a section s: Z — Y of f
then all fibres of f are irreducible.

Proof. As the fibres of f are non-singular, it suffices to show that they are connected. Write
Z'" := Spec(f«Oy ), and consider the Stein factorization

fegofiy iz 2 7.

By Zariski’s connectedness theorem (EGA III, Thm. 4.3.1) the morphism f’ has connected fibres.
The composition f’os is a proper section of g, hence it induces an isomorphism of Z with a closed
subscheme of Z’. As g is finite and Z’ is integral, it follows that g is an isomorphism. O

(10.36) Theorem. (Lang-Serre) Let X be an abelian variety over a field k. Let Y be a k-
variety and ey € Y (k). If f: Y — X is an étale covering with f(ey) = ex then Y has the
structure of an abelian variety such that f is a separable isogeny.

Proof. With Proposition (10.34) at our disposal, the main point of the proof is to construct
the group law my: Y XY — Y. Let 'y € X x X x X be the graph of the multiplication
on X, and write I'y C Y xY x Y for the pull-back of I'x via f x f x f. Let I'y C I'y be
the connected component containing the point (ey,ey,ey), and if I C {1,2,3} write g; for
the restriction of the projection pr: Y3 — Y' to I'y. We want to show that the projection
q12: 'y — Y X Y is an isomorphism—if this is true then we can define the desired group law
by taking my := Q30q1_212 Y xY — Y. Note that ¢12 has a section s; over {ey} x Y and a
section sy over Y x {ey}, given on points by si(ey,y) = (ey,y,y) and sa(y,ey) = (y,ey,y).
This readily implies that the proposed group law my satisfies the conditions of (10.34).
By construction we have a commutative diagram

I‘}/ — 11)(

Q12J( lpm

yxy 2 xxx |

in which both the upper arrow I'y — I'x and the morphism f x f are étale coverings, and the
right hand arrow pia: 'y — X x X is an isomorphism. Hence ¢i12: 'y — Y X Y is an étale
covering, too.
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The projection go: 'y — Y is a smooth proper morphism, being the composition of g2 and
p2: Y XY — Y. As s; gives a section of go we conclude from the above lemma that all fibres
of g9 are irreducible. In particular, Z := qgl(ey) = q1_21 (Y X {ey}) is irreducible. Further, ¢
restricts to an étale covering : Z — Y =Y x {ey} of the same degree. But sy gives a section
of r. Hence r is an isomorphism. It follows that the étale covering ¢;2 has degree 1 and is
therefore an isomorphism. O

(10.37) Corollary. Let X be an abelian variety over a field k. Let Q) be an algebraically closed
field containing k, and regard 0 = ex as an Q-valued point of X. Write ks for the separable
closure of k inside ). Then there are canonical isomorphisms

I, T X if char(k) = 0,
Tp e X X H#p T,X ifchar(k) =p >0,

n

& (X, 0) = m X [n](k, ) = {

where the projective limit runs over all maps X[nm](ks) — X[n|(ks) given by P+ m - P, and
where ¢ runs over the prime numbers. In particular, 7%'%(X},.,0) is abelian. Further there is a
canonical isomorphism

w18 (X,0) = 718 (X, 0) x Gal(ks/k) ,
where Gal(k,/k) acts on *'8(X,_,0) through its natural action on the groups X[n](ks).

Proof. For the proof of the first assertion we may assume that k = k,. Write 7 := 7™8(X}_,0).
We have 7 = Um (7/H) where H runs over the open subgroups of m. By (10.30), each H
corresponds to an étale covering fr: Yy — X together with the choice of a point ey € Yy (Q)
above 0, the pair (Yg, ey ) being unique up to isomorphism over X. By the Lang-Serre theorem,
we have the structure of an abelian variety on Yy with origin ey such that fgy is a separable
isogeny. Further, it is clear that a separable isogeny f: Y — X is a Galois covering (in the sense
of (10.33)) with group Ker(f)(k). (Recall that we assume k = k,.) By what was explained
in (10.33) we find that 7/H = Ker(fH)(k:)Opp = Ker(fg)(k), for any open subgroup H C 7.
Let . be the set of isomorphism classes of separable isogenies f: Y — X, where we call
f:Y — X and f": Y’ — X isomorphic if there is an isomorphism of abelian varieties a: ¥ — Y
with f'ea = f. We partially order .# by dominance; so f > f’ if there is a homomorphism
of abelian varieties a: Y — Y’ with f'ea = f. If f > f’ then we get a homomorphism
Ker(f) — Ker(f’), independent of the choice of «. In this way we have a projective system of

finite groups {Ker(f)(k)} fes and the conclusion of the above discussion is that
m = lim Ker(f)(k) (12)
fes
as pro-finite groups.
If n is a positive integer then [n] = [n]x factors as X Jox /X [n]ioe - X where f is

purely inseparable and ¢ is separable. Of course, if char(k) = 0 or char(k) =p > 0 and ptn
then f is the identity and g = [n]. For the purpose of this discussion, write g = [n]sep. The
Galois group of [n]sep is X[n](k). Let #’ C .7 be the subset of all isogenies [n]sp for n € Zs1.
Then .#’ is cofinal in .#; indeed, if f: Y — X is any separable isogeny, say of degree d, then by
Prop. (5.12) there is an isogeny g: X — Y with [d]x = fog, and then it follows from Cor. (5.8)
that [d]sep dominates f. Hence we may restrict the limit in (12) to the terms f € .#’; this gives
the desired isomorphism

=, lim K k) = lim X[n](k),
Q fg; er(f)(k) lin [n] ()
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where n runs over the set Z>1, partially ordered by divisibility.
The last assertion of the theorem (now again over an arbitrary ground field) follows by using
what was explained in (10.31), noting that 0 € X () factors through a k-rational point. O

(10.38) As an application of this theorem, let us now discuss how the ¢-adic cohomology of an
abelian variety can be described in terms of its Tate-¢-module.

First let X be any complete variety over a field k, say with dim(X) = g. Let ks be a
separable closure of k, and let £ be a prime number different from char (k). The ¢-adic cohomology
H* (X, ,Z) = @?ioHi(st,Zg) is a graded-commutative Z,-algebra of finite type that comes
equipped with a continuous action of Gal(ks/k). If z € X (ks) then the first f-adic cohomology
and the fundamental group of X, are related by

Hl(Xk_gyZZ) = Homcont (Wl(st,.’i)7Z[) ) (13)

where the right hand side is the group of continuous homomorphisms 71 (Xy_ ,Z) — Zy. The
homomorphism Gal(k,/k) — Out(m (Xy,, Z)) of (10.31) induces a homomorphism Gal(k,/k) —
Aut(m(st,:Z‘)ab), and this gives a continuous Galois action on Homggyg (ﬂl(st,.i‘),Zg) =
Homeont (ﬂl(st,a_:)ab,Zg). The isomorphism (13) is equivariant for the Galois actions on the
two sides.

Now we specialize this to the case where X is an abelian variety. As we shall prove later,
H*(Xk,,Zy) is then the exterior algebra on H(X},,Z); see Cor. (13.32). Admitting this, we
find the following result.

(10.39) Corollary. Let X be an abelian variety over a field k, let k C ks be a separable
algebraic closure, and let ¢ be a prime number with ¢ # char(k). Then we have

H'(Xy,,Z¢) = (T, X)" := Hom(T; X, Zy)

as Z¢-modules with continuous action of Gal(ks/k). Further we have an isomorphism of graded-
commutative Zg-algebras with continuous Gal(ks/k)-action

H* (X, , Ze) = N [(TeX)Y] .

Exercises.

(10.1) Let G be a p-divisible group over a perfect field k. Show that for every n the square

Gn,rcd ? Gn+1,rod

l l

Gn 1_71) Gn+1
is Cartesian. Conclude that the exact sequence (7) splits.

(10.2) Let K be afield, K C K, a separable algebraic closure. Let K C L be a finite extension
inside K.
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Let H be a finite étale group scheme over L, and consider G := Resy,/x(H), the K-group
scheme obtained by Weil restriction of scalars from L to K. By definition of the Weil
restriction, G represents the functor Sch(/)%p — Gr given by T — H(Tp). Show that G is
again a finite étale group scheme.

Assume (for simplicity) that H is commutative. Write I'y, = Gal(K/L) C T'x =
Gal(Ks/K). Show that G(K) = Ind?f H(K,) as representations of Gal(K,/K).

Let X be an abelian variety over L, and write Y := Res/x(X), which is an abelian variety
over K of dimension dim(X) - [L : K|. If £ is a prime number different from char(K’), show

that 7,(Y) & Indp* T;(X) as Z¢[Gal(K,/K)]-modules.
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Chapter XI. Polarizations and Weil pairings.

In the study of higher dimensional varieties and their moduli, one often considers polarized
varieties. Here a polarization is usually defined as the class of an ample line bundle modulo a
suitable equivalence relation, such as algebraic or homological equivalence. If X is an abelian
variety then, as we have seen in (7.24), the class of an ample bundle L modulo algebraic equiv-
alence carries the same information as the associated homomorphism A = pr: X — X*. And
it is in fact this homomorphism that we shall put in the foreground. One reason for this is
that X\ usually has somewhat better arithmetic properties; for instance, it may be defined over a
smaller field than any line bundle representing it. The positivity of an ample bundle shall later
be translated into the positivity of the Rosati involution associated to A; this is an important
result that shall be given in the next chapter.

The first Chern class of L only depends on L modulo algebraic equivalence, and we therefore
expect that it can be expressed directly in terms of the associated homomorphism A = . This
is indeed the case. As we have seen before (cf. 7?), the ¢-adic cohomology of X can be described
in more elementary terms via the Tate-f-module. The class ¢;(L) then takes the form of an
alternating pairing E)': T, X x TyX — Z,(1), usually referred to as the Riemann form of L (or
of \). Tt is obtained, by a limit procedure, from pairings e)\: X[n] x X[n] — p,, called the Weil
pairing,.

§1. Polarizations.

(11.1) Proposition. Let X be an abelian variety. Let A\: X — X' be a homomorphism, and
consider the line bundle M := (id,\)*Z?x on X. Then ¢y = X+ A\'. In particular, if \ is
symmetric then ppr = 2.

Proof. Immediate from Proposition (7.6) together with Exercise (7.5). O

(11.2) Proposition. Let X be an abelian variety over a field k. Let A\: X — X' be a homo-

morphism. Then the following properties are equivalent:

(a) A is symmetric;

(b) there exists a field extension k C K and a line bundle L on Xy such that A\ = pr;

(c) there exists a finite separable field extension k C K and a line bundle L on Xy such that
AK'ZiwL.

Proof. Assume (a) holds. Let M := (id,\)*Zx and N := M?2. By the previous proposition
we know that ¢y = 2A, so oy = 4\. In particular, X[4] C K(N) = Ker(pn). We claim
that X[2] C X[4] is totally isotropic with respect to the commutator pairing . Indeed, if z,
' e X|[2] (T) for some k-scheme T then possibly after passing to an fppf covering of T" we can
write = 2y and 2’ = 2y’ for some y, ¥’ € X[4](T). Our claim now follows by noting that the
restriction of eV to X [4] x X[4] takes values in 4. By Corollary (8.11) we can find a line bundle
L on X7 such that N = [2]*L on X7. But then 4)\; = @3-, = 4, using Corollary (7.25). As
[4]x is an epimorphism, it follows that Az = . So (b) holds with K = k.

PolWp, 8 februari, 2012 (635)
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To see that the apparently stronger condition (¢) holds, view A as a k-valued point of
Homay(X,X"). Let P(\) C Picy, be the inverse image of A under the homomorphism
¢: Picx /s, — Homav(X, X*%). As P()) is a closed subscheme of Picx g, it is locally of finite
type. If T is a k-scheme then the T-valued points of P()\) are the classes of line bundles M
on X7 such that ¢y = A\. Note that P()) inherits a natural action of X! = Picg(/k by trans-
lations. The exact sequence of (7.22) tells us that for every k-scheme T the set P(M\)(T) is
either empty or it is a principal homogeneous space under X*(T). Hence if L is a line bundle
on Xz with ¢, = Af then o — [t L] defines an isomorphism of k-schemes (X')z = P(A)z. In
particular, P()\) is a geometrically integral k-scheme, so it has points with values in some finite
separable extension k C K.

Finally, it is clear that (c) implies both (a) and (b). O

(11.3) Corollary. Let X/k be an abelian variety. Then the homomorphism : NSx,, —
Hom™™ (X, X*") of (7.26) is an isomorphism.

Proof. Both group schemes are étale and we already know that v is injective. Hence it suffices
to show that 1 is surjective on ks-valued points, and this follows from the preceding Proposi-
tion. g

(11.4) Proposition. Let X/k be an abelian variety. Let \: X — X' be a symmetric homo-
morphism, and write M := (id,\)*Zx. Let k C K be a field extension and let L be a line
bundle on X with A\ = .

(i) We have: X is an isogeny < L is non-degenerate < M is non-degenerate.

(i) If A is an isogeny then L is effective if and only if M is effective.

(iii) We have: L is ample < M is ample.

Proof. By Proposition (11.1) v = 291 = @12, so Mg and L? are algebraically equivalent.
Now (i) is clear, and (ii) follows from Corollary (9.23) and part (ii) of Proposition (9.18). For
(iii), recall that a line bundle N on X is ample if and only if N is non-degenerate and effective;
this is just Proposition (2.22). O

Putting Propositions (2.22), (11.2) and (11.4) together we obtain the following corollary.

(11.5) Corollary. Let X/k be an abelian variety. Let \: X — X' be a homomorphism. Then
the following properties are equivalent:
(al) A is a symmetric isogeny and the line bundle (id, \)*%? on X is ample;
(a2) A is a symmetric isogeny and the line bundle (id,\)*2? on X is effective;
(bl) there exists a field extension k C K and an ample line bundle L on Xy such that
Ak = $L;
(b2) there exists a finite separable field extension k C K and an ample line bundle L on X
such that A\x = ¢r,.

(11.6) Definition. Let X be an abelian variety over a field k. A polarization of X is an isogeny
A: X — X' that satisfies the equivalent conditions in (11.5).

By the Riemann-Roch Theorem (9.11) the degree of a polarization is always a square:
deg(\) = d? with d = x(L) if Ay = ¢. If X is an isomorphism (equivalent: A has degree 1) then
we call it a principal polarization.
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It is clear that the sum of two polarizations is again a polarization. But of course the
polarizations do not form a subgroup of Homay (X, X*).

We also remark that if A is a polarization, then for any line bundle L on X with A = ¢,
we have that L is ample. In fact, ampleness of a line bundle N on an abelian variety only
depends on the associated homomorphism ¢y, as is clear for instance from Proposition (11.4).

philobstr (11.7) Let X be an abelian variety over a field k. We have an exact sequence of fppf sheaves
0 — X' — Picy, — Hom™™ (X, X*) — 0
which gives a long exact sequence in fppf cohomology
0 — X' (k) — Pic(X) — Hom™™ (X, X*) L HE o(k, X') — -+

For A\: X — X' a symmetric homomorphism, () is the obstruction for finding a line bundle L
on X (over k) with ¢, = A. Now we know from Proposition (11.2) that 9(2A) = 0; hence 9(\)
lies in the image of

Hi e (k, X*[2]) — Hppe(k, X))

(NOG VERDERE OPM OVER MAKEN, BV VGL MET GALOIS COHOM?)

PolPullback (11.8) Proposition. Let f: X — Y be an isogeny. If u: Y — Y is a polarization of Y, then
f*u:= ftopof is a polarization of X of degree deg(f*u) = deg(f)? - deg(u).

Proof. 1t is clear that f*u is an isogeny of the given degree. By assumption there is a field
extension £ C K and an ample line bundle M on Yg such that ux = ¢pr. Then f*ux = @
and because f is finite f*M is an ample line bundle on X . O

See Exercise (11.1) for a generalization.

CorDef (11.9) Definition. Let X and Y be abelian varieties over k. A (divisorial) correspondence
between X and Y is a line bundle L on X X Y together with rigidifications a: Ljjoyxy — Oy
and B: Lix x {0} -+ Ox that coincide on the fibre over (0,0).

Correspondences between X and Y form a group Corrg(X,Y), with group structure ob-
tained by taking tensor products of line bundles. (Cf. the definition of Px/g . in Section (6.2).)

Note that the multiplicative groep G, acts (transitively) on the choices of the rigidifications
(ar, B). Moreover, if Y = X we can speak of symmetric correspondences.

The Poincaré bundle &2 = Zx on X x X! comes equipped with a rigidification along
{0} x X*. There is a unique rigidification along X x {0} such that the two rigidifications agree
at the origin (0,0). We thus obtain an element

[32)(] = (c@)(,ay,ﬁy) S Corrk(X,Xt).

The following proposition makes an alternative definition of the notion of polarization pos-
sible.

sernativedefpol (11.10) Proposition. Let X/k be an abelian variety. Then we have a bijection

~ symmetric divisorial correspondences
{polarizations \: X — X'} — { Y P }

(L,, ) on X x X such that A% L is ample
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by associating to a polarization \ the divisorial correspondence (L, «, 3) with L = (idx X \)*Px
and a and 3 the pull-backs under idx x A of the rigidifications ag and (3.

Proof. This is essentially contained in Corollary (11.5). The inverse map is obtained by associat-
ing to (L, a, 8) the unique homomorphism A\: X — X* such that (L,a) = (idx x\)*(Zx,as) as
rigidified line bundles on X x X. The assumption that (L, a, 3) is symmetric implies that Ax is
symmetric, and because (idx,\)*Zx = A% (idx x A\)*Px = A% L is ample, A is a polarization.
This establishes the correspondence. ]

The alternative definition of a polarization suggested by Proposition (11.10) as “a sym-
metric self-correspondence such that restriction to the diagonal is ample” is evidently similar
in appearance to the definition of a positive definite symmetric bilinear form in linear algebra.
But, whereas in linear algebra one dominantly views a bilinear form b as a map V x V — k
rather than as a map V — V* given by v — (w — b(v, w)), in the theory of abelian varieties the
latter point of view dominates. Note further that the role of the evaluation map V x V* — k
with (v,w) — w(v) is played in our context by the Poincaré bundle .

§2. Pairings.

We now turn to the study of some bilinear forms attached to isogenies. In its most general form,
any isogeny f gives a pairing ey between Ker(f) and Ker(f"); this is an application of the duality
result Theorem (7.5). Of particular interest is the case f = [n]x. If we choose a polarization A
we can map X [n] to X![n], and we obtain a bilinear form e} on X[n], called the Weil pairing.
The pairings that we consider satisfy a number of compatibilities, which, for instance, allow us
to take the limit of the pairings e}, obtaining a bilinear form E* with values in Z(1) on the
Tate module 7, X. In cohomological terms this pairing is the first Chern class of A (or rather, of
any line bundle representing it). It is the ¢-adic analogue of what over C is called the Riemann
form associated to a polarization. (See also 777)

(11.11) Definition. Let f: X — Y be an isogeny of abelian varieties over a field k. Write
B: Ker(ft) — Ker(f)P for the isomorphism of Theorem (7.5).
(i) Define
er: Ker(f) x Ker(f*) — Gk

to be the perfect bilinear pairing given (on points) by e¢(z,y) = 5(y)(x). Note that if Ker(f) is
killed by n € Z>; then ey takes values in j1,, C G,,. In the particular case that f =nx: X — X
we obtain a pairing
en: X[n] x X*[n] — pn
which we call the Weil pairing.
(ii) Let A: X — X' be a homomorphism. We write

ed: X[n] x X[n] — pn

n

for the bilinear pairing given by e} (z1,72) = e, (331, )\(:L‘Q)). If A = ¢, for some line bundle L
then we also write eZ instead of e)).

Recall that if A and B are finite commutative group schemes (written additively), a pairing
e: AxB — G,, is said to be bilinear if e(a+a’,b) = e(a,b)-e(a’,b) and e(a, b+b") = e(a,b)-e(a,b’)
for all points a and a’ of A and b and V' of B. (Points with values in an arbitrary k-scheme.) The
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pairing e is said to be perfect if sending a to e(a, —): B — G,, gives an isomorphism A — BP.
This is equivalent to the condition that b — e(—,b) gives an isomorphism B — AP. It is
clear from the construction that the pairings ey, in particular also the Weil pairings, are perfect
bilinear pairings. If n is relatively prime to the degree of A then the pairing e is perfect, too.

There are various ways in which we can make the pairings defined above more explicit. We
shall give a couple of different points of view.

(11.12) Let us first try to unravel the definition of e; by going back to the proof of (7.5). This
leads to the following description. Let T" be a k-scheme. Let L be a rigidified line bundle on Y
that represents a class n € Ker(f")(T). Then f*L = Ox,.. Hence the geometric line bundle L
corresponding to L can be described as a quotient of X7 x7 AL by an action of Ker(f)r. More
precisely, by what was explained in (7.3) there exists a character x: Ker(f)r — G, 1 such that
the action of a point z of Ker(f) on X7 x7 AL is given (on points) by

(z,a) — (2 + =, x(z) - a).

The isomorphism Ker(f?) = Ker(f)? of Theorem (7.5) sends 71 to x. Hence the pairing ey is
given by ef(x,n) = x(x).

(11.13) Next let us give a more geometric description of the Weil pairings e,. Suppose D is
a divisor on X such that nD is linearly equivalent to zero. Write L = Ox (D). As n*L = Ox
(cf. Exercise (7.2)), there exists a rational function g on X with divisor (¢) = n*D. But also
L™ = Oy, so there exists a rational function f with divisor (f) = nD. Then n*f and g™ both
have divisor n -n*D = n*(nD), so there is a constant ¢ € k* with ¢" = ¢ (n*f).

Let = € X[n|(k) be a k-rational n-torsion point. We find that

g(©" =c- f(n&) =c- f(n(¢ +2)) = g(§ +2)" = ((£;9)(€)"

for all £ € X (k). So g/t;(g) is an n-th root of unity. We claim that in fact e, (2, [D]) = g/t (g).

To see this, note that we have an isomorphism of line bundles n*L - Ox given by
g — 1. As described in (11.12), there is a character x: X[n] — G,, such that the natural
action of X [n| on n*L becomes the action of X[n| on Ox given by the character x. Note that
xr € X|[n](k) acts on the identity section 1 € T'(X,Ox) as multiplication by y(x)~!. Hence
9/t5(9) = x(z) = en (,[D]), as claimed.

(11.14) Example. We calculate the Weil pairing e3 on the elliptic curve E over Fy given by
the affine equation y? +y = 23. This curve has 9 points over F4 which realise an isomorphism
E[3|(Fs) = Z/3Z x Z/3Z. Let O = Ps be the point at oo, which we take as the identity
element on E. The bundle L = Opg(Ps) is ample. The associated principal polarization
X E = E' = Pic%/Fz is given on points by R — Og(O — R). (Note that this is minus
the map given by R — Og(R — O); see Remark (2.11).)

Let us calculate e3(Q, P) for P = (0,0) and Q = (1, ), where « is an element of F; not
in Fy. First we note that the function y has divisor (y) = 3 - (P — O). Next we compute
a function g with divisor [3]*(O — P). For this we compute the “triplication formula” on E
which expresses for a point R = (£,n7) on E the coordinates of 3R in those of R. As we
have seen in Example (5.26), £ is supersingular. The relative Frobenius 7 = Fg/p,: E — E
is an endomorphism of E. One can show that it satisfies 72 = —2, for example by verifying
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that for T € E the point 72(T) lies on the tangent line to E in T. As —1 on E is given by
(x,y) — (2,5 + 1) we find that 2R has coordinates (¢4,7* 4+ 1). Next one calculates that the
coordinates of 3R are ((£2 + &3+ 1)/(€ + %)%, (n€® +1)? /(€ + €*)?). Hence the function

4
9= —>35T7
yxs 4+ 1

has divisor (g) = [3]*(O — P). (Use that 3- (g) = [3]*(y) =3 - [3]"(O — P).)
Now we know that g/ 59 is constant and this constant can be computed by evaluating g
and t(,g at a suitable point T'; so

9/tg9=9(1)/9(T + Q).

For T we take a point rational over Fgy. Let v be a generator of Ff, with v2! = a and such
that § := 79 € F} satisfies 6% + § = 1. Then the point T = (v3,~4'®) is in E(Fg4). One easily
verifies that (724,~4'® + 1) is again a point of E, and that it lies on the line through 7" and Q;
hence T + Q = (v**,4'8). By (11.13) we conclude that €3(Q,P) = e5(Q, (O — P)) equals
(Y223 +9%) =14 =1/a =a*.

The value of €3 (P’, Q") for any pair (P’,Q’) € E[3] x E[3] can be computed from this using
the fact that e is bilinear and alternating; see Cor. (11.22) below.

(11.15) Let f: X — Y be an isogeny of abelian varieties over a field k. By definition, f* Y —
X! is the unique map such that (f x idy«)* Py = (idy x fY)*Zx as line bundles on X x Y*
with rigidification along {0} x Y. Note that this isomorphism is unique, so without ambiguity
we can define 2 := (f X idy+)* Py = (idx x f1)*ZPx. The diagram to keep in mind is

QZX 2 @Y

fxid (1)

. t
ST Y x Y

X x Xt X xYt

On the line bundle 2 we have an action of Ker(f) x {0}, lifting the action on X x Y by
translations. This action is given by isomorphisms o,: 27 — t’(kLO)QT, for any k-scheme T
and z € Ker(f)(T). Likewise, we have an action of {0} x Ker(f*), given by isomorphisms
Ty D — tzko’q)QT for ¢ € Ker( ft)(T ) Unless f is an isomorphism, these two group scheme
actions on 2 do not commute, for if they did it would give us an action of Ker(f) x Ker(f*)
and 2 would descend to a line bundle L on (X x Y?)/Ker(f) x Ker(f') =Y x X*. But then
we had (—1)9 = x(Px) = deg(f) - x(L), which is possible only if deg(f) = 1. We shall prove
that the extent to which the two actions fail to commute is measured by the pairing ey.

Let 2’ be the restriction of 2 to X x Ker(f*). We have 2’ = (idx x f)*((Zx)xx{0})
so the natural rigidification of £y along X x {0} (see (7.7)) gives us a trivialisation 2’ —
Ox xker(st)- The action of {0} x Ker(f*) on 2 restricts to the trivial action on 2’. It will be
useful to think of 2’ as being the sheaf of sections of A' over X x Ker(f"). Writing Ay, i) =
X x Ker(f?) x Al, the action of a point (0, ¢q) € {0} x Ker(f!) on 2’ corresponds to the action
on X x Ker(f?) x Al given by 7,: (t,u,a) — (t,u + q,a).

Note that also the action of Ker(f) x {0} restricts to an action on 2’. To describe this
action we apply what was explained in (11.12) in the “universal case”, i.e., with T' = Ker(f")
and 77 = idy. The corresponding line bundle L on Y7 = Y X Ker(f?) is just the restriction
of Py to Y x Ker(f?), so f*L is precisely our bundle 2’. If we write a point of Ker(f)r =
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Ker(f)xKer(f!) as a pair (x,u) then the conclusion of (11.12) is that the character x: Ker(f)xy
Ker(f') — G xx Ker(f') is given by (z,u) — (ef(z,u),u). Hence the action of a point
(7,0) € Ker(f)x{0} on 2’ corresponds to the action on X x Ker(f?)x Al given by o,: (t,u,a) —
(t +x,u,ep(z,u) - a).

Now we can start drawing some conclusions. The first result is an interpretation of the
pairing ey as a measure for the extent to which the two group scheme actions on 2 fail to
commute.

(11.16) Proposition. Let f: X — Y be an isogeny of abelian varieties over a field k, and
consider the line bundle 2 := (f x idy+)* Py = (idx x f)*Px on X x Y'. Let T be a k-
scheme, x € Ker(f)(T) and q € Ker(f*)(T). Let 0,2 D —> oy2r be the isomorphism that

(a:7
gives the action of (x,0) € Ker(f) x {0} on 27, and let 7,: D1 — tlo,2r be the isomorphism
that gives the action of (0,q) € {0} x Ker(f!). Then we have a commutative diagram

tr T
o % (x,0)Ta N
2r = Hag2r Ha,) 2T
H J{multiplication by ef(zx, q)
th, \Og
Tq % (0,q)"® *
2r — Hog2r Ha,q) 2T

Proof. A priori it is clear that there exists a constant ¢ € Gy, (T') such that (tf, ,0a2)e7g =
¢+ (t{;,0)Ta)° 0z, so all we need to show is that ¢ = ey(x, q). For this we may restrict everything
to X x Ker(f!). As in the above discussion, we think of 2’ as the sheaf of sections of A!
over X x Ker(f?). We have seen that (f(km’o)’fq)odx is given on points by (¢,u,a) — (t + z,u+
g ef(x,u) 'a), whereas (t’(ko q)ax)qu is given by (¢, u,a) — (t—l—a:,u—l—q, ef(z, u+q) 'a). Because
ey is bilinear, the result follows. ]

Next we prove a compatibility result among the two main duality theorems that we have
proved in Chapter 7.

(11.17) Proposition. Let f: X — Y be an isogeny of abelian varieties. Let kx: X — X' be
the canonical isomorphism.

(i) For any k-scheme T and points « € Ker(f)(T) and n € Ker(f*)(T) we have the relation

ere (0, kx(z)) = ep(z,n) "t
(i) Let B1: Ker(f!) = Ker(f)P and B: Ker(f**) = Ker(f*)? be the canonical isomor-

phisms as in Theorem (7.5), and let v: Ker(f)PP = Ker(f) be the isomophism of Theo-
rem (3.22). Then the isomorphism Ker(f) — Ker(f*) induced by kx equals —B5 ' o3P oy~ 1.

Proof. (i) Consider the commutative diagram

. t .
X xXxt X x gyt Dy oy

RxXidJ( HxXidl lRyXid (2)
Xt xt SIS oy oy SO ey

If we read the lower row from right to left (term by term!), we get the row

vt syt SOy oy S e xn
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which is precisely (1) for the morphism f*: Y* — X*. Now the result follows from the previous
proposition, with the —1 in the exponent coming from the fact that we are reading the lower
row in (2) from right to left, thereby switching factors.

(ii) This follows from (i) using the relations ef(z,n) = B1(n)(z) = (677 ')(x)(n) and
eyt (n,kx (x)) = B2 (rx (x)) (n)- O

(11.18) Example. Let X be an abelian variety over k. Let &2 = &x be its Poincaré bundle.
Let n be a positive integer, and let e,,: X[n] x X*[n] — u, be the Weil pairing.

The geometric line bundle on X x X*[n] that corresponds to P x xxt[n) 18 the quotient of
A, xipn = X xX'[n]x A' under the action of X [n]x {0}, with # € X[n] acting on X x X*[n]x A'
by o (t,u,a) — (t + x,u, e, (x,u) - a).

To make this completely explicit, suppose k = k and char(k) { n, so that X[n] and X*[n]
are constant group schemes, each consisting of n?9 distinct points. Then for ¢ € X*[n](k), the
restriction of the Poincaré bundle to X x {£} is given by

Pxxiey(U) ={f € Ox(n~tU) | flv+2) =en(x,) - f(v) forall v € n™'U and = € X[n]}.

For the restriction of 2y to X[n] x X' we have an analogous description; namely, the
corresponding geometric line bundle is the quotient of Al mxxt = X [n] x Xt x A under the
action of {0} x X'[n], with ¢ € X'[n] acting on X[n] x X' x A! by 7¢: (t,u,a) — (t,u +
Een(t, &)1 a). Note, however, that whereas our description of &|xyxt[,) is essentially a
reformulation of the definition of the Weil pairing, to arrive at our description of & x[,)xx+ we
use (i) of Proposition (11.17).

(11.19) Let L be a non-degenerate line bundle on an abelian variety X. As the associated
isogeny ¢r: X — X' is symmetric, we have K(L) = Ker(pr) = Ker(yh), and we obtain a
pairing

ep,: K(L) x K(L) — Gy, .
On the other hand we have the theta group 1 — G,,, — ¢(L) — K(L) — 0, and this, too,
gives a pairing

el K(L) x K(L) — G, .

(11.20) Proposition. We have e,,, = el.

Proof. We apply what was explained in (11.15) to the isogeny ¢r: X — X' We identify
X x X* with X x X via the isomorphism id x kx: X x X = X x X*. The line bundle
2 = (pr X kx)* Pxe = (id x p)* Px is none other than the Mumford bundle A(L) associated
to L. Let 2" := 2|x. k1) = ML) xxk(r) Which, as we already knew from Lemma (2.17), is
trivial.

Let T be a k-scheme, and consider T-valued points z, y € K (L) (T ) Possibly after replac-
ing T by a covering we can choose isomorphisms ¢: Lp = t* Ly and ¢: Lp = tZLT. Then
(x,¢) and (y,1)) are T-valued points of (L), and by definition of the pairing e* we have the
relation

(trp)otp = el (z,y) - (thep) . (3)

We can also view v as the trivialisation
¥: Oxpxiyr — MLr)xpx iy = toLlr ® Ly
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that sends 1 € I'(X1,Ox, x{y}) to the global section ¢ of t; Lt ® L:;l. If 0p: Qp — t’(kw O)QT
is the isomorphism that gives the action of (z,0) € K (L) x {0} on 2 then it follows from what
we have seen in (11.15) that we have a commutative diagram

A(L) x1 x{y} tle,0) ML) X1 x [}
ﬂjT TSLPL (l‘vy)'(tz},o)w)

OXTX{?J} = tz(:v,O)OXTX{y}

(02) X1 x (v}

We have tf, o A(Lr) = m*(t;Lr @ LYY @pi(tiLr @ L7')~' ® A(Lr). Taking this as an
identification, o, is given on sections by s — m*p @ pip~! ®s. (Note that this does not depend
on the choice of ¢.) Now restrict to X7 x {y} and use the natural identification

tz(:B,O)A(LT)‘XTX{y} = t:;_,'_yLT X t;L_l = Hom(t;LT, t;_,’_yLT) .

we find that o,°¢ maps 1 € I'(X7,0x,x{y}) to the homomorphism t?’;@owogz)_l: trLy —

ty+yLr. On the other hand, the composition (t?x’o)l/}) ocan sends 1 to ¢¥1. Hence we have

typeop™t = ey, (2,y) - 131
and comparison with (3) now gives the result. O

(11.21) Proposition. (i) Let f: X — Y be a homomorphism of abelian varieties over k. Then
for any integer n > 1 the diagram

X[n] x Y] 295 X[n] x Xtn]
fle{ J{en
Y[n] x Ytn] —2— L

is commutative. In other words: if T is a k-scheme, x € X[n|(T) and n € Y'[n](T) then
en(f(@),n) = en(z, f1(n))-

(ii) Let f: X — Y and g: Y — Z be isogenies, and write h := go f: X — Z. Then we have
“commutative diagrams”

Ker(f) x Ker(f!) ~5 Gy, Ker(g) x Ker(g') -5 Gy,
e | owma T H
Ker(h) x Ker(h!) 2% G, Ker(h) x Ker(ht) 2% G,

[723))
7

where the maps labelled are the natural inclusion homomorphisms. By our assertion that the
first diagram is commutative we mean that if T is a k-scheme, z € Ker(f)(T) andn € Ker(h')(T)
then ey (x,g'(n)) = ey (i(x),n); similarly for the second diagram.

Proof. (i) Let x: Y[n]p — Gy, 1 be the character corresponding to 7, as in (11.12). Then the
character corresponding to hf(n) is xoh: X[n]r — G, 1. By (11.12) we find

en(h(x),n) = x(M(x)) = xoh(z) = e, (z, k' (1)) .

(ii) Let x: Ker(h)r — Gy, 1 be the character corresponding to 1. Then the character
Ker(f)r — Gy, 1 corresponding to g*(n) is simply yei. Hence by what was explained in (11.12),
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en(i(z),n) = x(i(z)) = xoi(z) = es(z,9'(n)). This gives the first commutative diagram. For
the second, apply the first diagram to the composition flog': Z! — Y! — X*; then apply (i) of
Proposition (11.17). O

(11.22) Corollary. Let \: X — X! be a polarization, and let n be a positive integer. Then
the pairing e): X[n] x X[n] — p, is alternating: for any v € X[n|(T) with T a k-scheme we

have e)(z,x) = 1.

Proof. Without loss of generality we may assume that k = k
ample L. Consider the composition nA = Ao[n]x. Applying (ii) of Proposition (11.21) we find
a commutative diagram

and write A = ¢ for some

e

X[ x X'[n] - G

Db H
Ker(n)) x Ker(n\) =% G,
This gives e)(z,z) = e, (2, Xoi(z)) = enn(i(2),i(x)) = 1, where in the last step we use Propo-

sition (11.20) together with the remark that nA = . O

In particular, we find that the pairing e is skew-symmetric: e)(x,y) = e)(y,r)~!. Note,
however, that skew-symmetry is weaker in general than the property of being alternating.

(11.23) Let X be an abelian variety over a field k. Fix a separable closure k C ks. As usual,
¢ denotes a prime number different from char(k). Let z = (0,21, 22,...) be an element of T, X
and & = (0,&1,&s,...) and element of T, X*. Applying (ii) of Proposition (11.21) we find that

Egm (xma gm) = €pm+1 (f *Tm+1, gm—i-l) = €ym+1 (xm—i—la fm+1)£ .

This means precisely that

E(,8) = (Le(x1,61), e (22,&2), - - )

is a well-defined element of Zy(1) = 1yG,,. The map (x,§) — E(z,§) defines a perfect bilinear
pairing

E: Ty X x Ty X" — Zy(1).
If 3: T,X* = (T;X)V(1) is the canonical isomorphism as in Proposition (10.9) then the pair-
ing E is nothing else but the composition

ToX x ToXt PP T X < (T,X)Y (1) =% Ze(1)
where the map “ev” is the canonical pairing, or “evaluation pairing”. Note that the pairing F
is equivariant with respect to the natural action of Gal(ks/k) on all the terms involved.
If \: X — X! is a polarization, we obtain a pairing

EM T X xToX —Z(1) by  EMx,2') = E(x,TLA2")).

If A = ¢, we also write EZ for E*. It readily follows from Corollary (11.22) that the pairing £
is alternating.

Putting everything together, E* is a Gal(k,/k)-invariant element in (A?(7;X)Y)(1). The
cohomological interpretation is that £* is the first Chern class of A, or rather of any line bundle
representing A. Note that (A?(TyX)Y) (1) = H?(Xy,,Z¢(1)), see Corollary (10.39).
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§3. Existence of polarizations, and Zarhin’s trick.

(11.24) Suppose we have an abelian variety X of dimension g over a field k. If g = 1 then
X is an elliptic curve, and the origin O (as a divisor on X) gives a principal polarization (via
Qr— O—Q). If g > 2 then in general X does not carry a principal polarization, not even if we
allow an extension of the base field. Let us explain why this is so.

Fix g > 2. We shall use the fact that there exists an algebraically closed field k and an
abelian variety Y of dimension g over k such that End(Y) = Z. A proof of this shall be given
later; see 77. Note that this does not work for arbitrary k; for instance, every abelian variety
over F, has Z C End(Y), as we shall see in ??.

If Y carries no principal polarization then we have the desired example. Hence we may
assume there is a principal polarization A\: Y — Y*. As k = k there is a line bundle L with
A = . Because A is principal and End(X) = 7Z the only polarizations of Y are those of the
form prn = n- X, of degree n?9.

On the other hand, if ¢ is any prime number different from char(k) then Y[¢] = (Z/(Z)*9
as group schemes. Hence Y has a subgroup scheme H of order ¢. Let ¢: Y — X :=Y/H be
the quotient. If pu: X — Xt is a polarization then ¢*u is a polarization of Y, with deg(q*p) =
¢2.deg(u). But as just explained, any polarization of Y has degree equal to n?9 for some n € N.
Hence p cannot be principal.

With a similar construction we shall see later that an abelian variety of dimension g > 2
over a field of characteristic p in general does not even carry a separable polarization; see 77.

To arrive at some positive results, we shall now first give a very useful criterion for when a
polarization A\: X — X! descends over an isogeny f: X — Y. If L is a line bundle on X then
by Theorem (8.10) there exists a line bundle M on Y with L = f*M if and only if the following
conditions are satisfied:

(a) Ker(f) is contained in K (L) and is totally isotropic with respect to the pairing e (1) = ey, ;
(b) the inclusion map Ker(f) — K(L) can be lifted to a homomorphism Ker(f) — ¥4(L).

(The second condition in (a) is in fact implied by (b).) As we shall prove now, in order for a
polarization to descend, it suffices that the analogue of condition (a) holds.

(11.25) Proposition. Let \: X — X' be a symmetric isogeny, and let f: X — Y be an isogeny.
(i) There exists a symmetric isogeny pu: Y — Y such that A = f*u := flopo f if and only
if Ker(f) is contained in Ker(\) and is totally isotropic with respect to the pairing ey: Ker(\) x
Ker(\) — G,,. If such an isogeny p exists then it is unique.
(ii) Assume that an isogeny p as in (i) exists. Then u is a polarization if and only if X is a
polarization.

Note that the “only if” in (ii) was already proven in Proposition (11.8). For this implication
the assumption that f is an isogeny can be weakened; see Exercise (11.1).

Proof. (i) If A = f'ouo f then Ker(f) C Ker()\) and it follows from (ii) of Proposition (11.21),
applied with g = (f*op) and h = ), that Ker(f) is totally isotropic for the pairing ey.

For the converse, assume Ker(f) is contained in Ker(\) and is totally isotropic with respect
to ex. Consider the line bundle M := (1 x A\)*Zx on X x X. Recall from Example (8.26) that
the theta group ¢ (M) is naturally isomorphic to the Heisenberg group associated to the group
scheme Ker(A). We have natural actions of Ker(\) x {0} and {0} x Ker(\) on M; for the first
action note that M can also be written as (A x 1)* Zx:. The assumption that Ker(f) C Ker(\)
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is totally isotropic for ey means precisely that the actions of Ker(f) x {0} and of {0} x Ker(f)
commute, and therefore define an action of Ker(f) x Ker(f) on M. This gives us a line bundle N
on Y x Y such that M = (f x f)*N. If u: Y — Y is the (unique) homomorphism such that
N = (1x p)* Py then we get the desired relation A = flo o f. The uniqueness of i is immediate
from Lemma (5.4). But we also have A = A\ = (ftopo f)t = floulo f. Hence pu = pt.

(ii) By Proposition (11.2) there exists a field extension £ C K and a line bundle L on Yy
with px = ¢r, and then A\g = @-1. Because f is finite, L is effective if and only if f*L is
effective. n

(11.26) Corollary. Let X be an abelian variety over an algebraically closed field. Then X is
isogenous to an abelian variety that admits a principal polarization.

Proof. Start with any polarization \: X — X! By Lemma (8.22) there exists a Lagrangian
subgroup H C Ker()A). (There clearly exists a subgroup H C Ker(\) satisfying condition (i) of
that Lemma.) By the previous Proposition, A descends to a principal polarization on X/H. O

The conclusion of the Corollary no longer holds in general if we drop the assumption that the
ground field is algebraically closed. For examples, see e.g. Howe [1], [2] and Silverberg-Zarhin [1].

(11.27) Before we turn to Zarhin’s trick, we recall from Exercise (7.8) some notation.
Suppose X is an abelian variety and a = (a,;) is an r x s matrix with integral coefficients.
Then we denote by [a]x: X® — X" the homomorphism given by

S
[a]X(3317 CyTg) = (a119€1 +a12T2 + -+ A15Ts, - - - E QijTj, -, Qr1T] + QroTo + - - +arsl‘s) .
j=1

For r = s = 1 this just gives our usual notation [n]x for the “multiplication by n” maps. As
1
another example, the 1 x 2 matrix (11) gives the group law on X while the 2 x 1 matrix ( 1)

gives the diagonal.

If B is a ¢ x r matrix with integral coefficients then [3 - a]x = [f]x°[a]x: X* — X9 It
follows that if « is an invertible r x r matrix then [a]x is an automorphism of X”. Further, if
f: X — Y is a homomorphism of abelian varieties then for any integral r x s matrix «,

[y e (f, /) =(f,--, f)ela)x: X* =Y.

(11.28) Proposition. Let X be an abelian variety of dimension g.

(i) If « € M.(Z) then [a]x: X" — X" has degree det(a)?9.

(ii) Let B be an r x s matrix with integral coefficients. Then ([B]X)t = [tﬂ]X“ where '3 is
the transposed matrix.

Proof. (i) If det(a) = 0 then it is readily seen that [a]x has infinite kernel, so by convention
we have deg([ax]) = 0. Now assume det(c) # 0, and let {e1,...,e,} be the standard ordered
basis of Z". By the theory of elementary divisors, there is an ordered basis {fi,..., f,} for Z"
and a sequence of nonzero integers (nq,...,n,) such that a(e;) = n; - f;. Let § € GL,.(Z) be the
matrix with 3(e;) = f;, and let v = diag(nq,...,n,) be the diagonal matrix with coefficients n;.
Then [f]x is an automorphism of X" and it is clear that [y]x: X" — X", which is given by
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(r1,...,2) — (n121,...,n.2.), has degree (ny ---n,)% = det(a)?9. As [a]x = [y]x°[8]x the
claim follows.

(ii) Write 3 = (b;;). Any line bundle L on X" with class in Pic’ can be written as L =
PiL1®- - -®@p}iL,, where the p;: X™ — X are the projection maps and the L; are line bundles on X
with class in Pic’. Because (X*)" = (X*)* (cf. Exercise (6.2)) it suffices to know the restriction
of [B]% L to each of the coordinate axes {0} x --- x {0} x X x {0} x---x {0}. But the restriction
of [B]x to the j-th coordinate axis is the map X — X" given by « — (b1, bs;z,...,by;2) and
the pull-back of L under this map is

e @byl = L - @ L.

This means precisely that [3]%: (X™)! = (X*)" — (X*)! = (X*)*® is the map given by the matrix

b11 bi1 br1
by bij brj | = tﬁ )
bls bis brs
as claimed. 0

(11.29) Theorem. (Zarhin’s trick) Let X be an abelian variety over a field k. Then X% x (X*)*
carries a principal polarization.

Proof. Suppose we have an abelian variety Y, a polarization u: Y — Y, and an endomorphism
a: Y — Y. Consider the isogeny f: Y xY — Y x Y given by (y1,v2) — (y1 — a(y2), u(y2))-
The kernel is given by Ker(f) = {(a(y),y) | vy € Ker(x)}. In particular, deg(f) = deg(u).
Proposition (11.25) tells us under what conditions the polarization p x u: (Y xY) — (Yt x Y?)
descends to a polarization on Y x Y via the isogeny f. Namely: there exists a polarization v
onY x Yt with f*v = (u x u) if and only if

(a) o(Ker(u)) € Ker(u), and

(b) eu(a(yr), (y2)) - eu(y1,y2) = 1 for all (scheme valued) points y1, y of Ker(y).

Note that if such a descended polarization v exists then it is principal.
Condition (a) means that there exists an endomorphism 3: Y* — Y such that Bou = poa.
By (ii) of Proposition (11.21),

en(a(yr), a(y2)) = euoa(y1, alyz)) = egon(y1, 2(y2)) = eu(y1, B'a(y2)) |

so (b) is equivalent to the condition that e, (y1, (1 + 8'@)(y2)) = 1 for all y1, y» in Ker(u). As
e, is a pefect pairing on Ker(p), this is equivalent to the condition that (1 + f'a) € End(Y)
kills Ker(pu).

We now apply this with ¥ = X%. Choose any polarization A on X, and take p = A\* (so
w=AXAxAx\). For o we take the endomorphism [a]x given by a 4 x 4 matrix o with
integral coefficients. As A\ o[a]x = [a]xtoA?, condition (a) is automatically satisfied, and we
have 8 = [a]x+ in the above. Using (ii) of Proposition (11.28) we find that the only condition
that remains is that [ids + *aa]x kills Ker(u) = Ker(\)*, where idy is the 4 x 4 identity matrix.

Choose an integer m such that Ker(\) C X[m]. We are done if we can find an integral 4 x 4
matrix « such that ids + *ac = 0 mod m. To see that such a matrix can be found we use the
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fact that every integer can be written as a sum of four squares. In particular there exist integers
a, b, ¢, d with a® + b* + ¢ + d> = m — 1. Now take

a —-b —c¢c —d

b a —-d ¢
““le a4 a -b|° (4)
d —c b a
for which we have idy + tacr = m - idy. O

(11.30) Remarks. (i) The choice of the matrix a can be explained as follows. Consider the
Hamiltonian quaternion algebra H =R-1+4+R-7+R-j+ Rk, which is a central simple algebra
over R. For x = a-1+4b-i+c-j+d-k we define its complex conjugate by z = a-1—b-i—c-j—d-k.
The reduced trace and norm of H over R are given by

Trdy/r(z) =2+ 7 = 2a and Nrdy/r(z) = 2T = a? b2+ d2.

Further, taking {1,i,7,k} as a basis of H, left multiplication by z is given precisely by the
matrix (4). The map h: H — M4 (R) sending = to this matrix is an injective homomorphism of
R-algebras, and we have h(Z) = *h(x) and Nrdyg(z) = det(h(x)). Further it is clear that h
maps the subring Z -1 +Z-i+7Z-j+ Z -k into My(Z). In sum, we can think of « as being
the (left) multiplication by a-1+b-i+c-j + d -k, where a, b, ¢, d are chosen such that
A+ +F+d>=m—1

(ii) In general there is no positive n such that for any abelian variety X the nth power X"
admits a principal polarization. To see this we go back to the example in (11.24). We start
with an abelian variety Y of dimension g > 2 over a field k = k such that End(Y) = Z and
such that Y does admit a principal polarization; see 77 for the existence. Any homomorphism
Y™ — (YH)™ is of the form \"o[a]y = [a]ytoA" for some a € M,(Z), and it easily follows
from (ii) of Proposition (11.28) that this homomorphism is symmetric if and only if o = ‘a.
Now choose a prime number ¢ different from char(k), and choose a subgroup H C Y of order ¢,
generated by a point of order £. Let m: Y — X :=Y/H be the quotient.

Let p be any polarization on X™. By what was just explained we have (7")*u = \"o[a]y
for some a € M, (Z). Moreover, H x --- x H C Ker([a]y), which readily implies that « is
divisible by ¢, say a = ¢ - 3. Further we have deg(u) - /2" = deg([a]y) = ¢*"9 - det(8)*, so
deg(p) = £2™(9=1) . det()?9. In particular, X™ does not carry a principal polarization.

Exercises.

(11.1) Let f: X — Y be a homomorphism of abelian varieties with finite kernel. If p: Y — Y
is a polarization, show that f*u := flouo f is a polarization of X.

(11.2) Let X be an abelian variety over a field k. Suppose there exists a polarization A\: X — X*
with deg(\) = m odd.

(i) Show that there exist integers a and b with 1+ a2 +b? = 0 mod m. [Hint: Use the Chinese
remainder theorem. First find a solution modulo p for any prime p dividing m. Then use
the fact that the curve C' C A? given by 1 + 22 + y? = 0 is smooth over Z, (p # 2 !) to see
that the solutions can be lifted to solutions modulo arbitrarily high powers of p.]
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(i) Adapting the proof of Zarhin’s trick, show that X? x (X*)? admits a principal polarization.

Ex:q#MmodPicO (11.3) Let L be a line bundle on an abelian variety X over a perfect field k. Write Y := K (L),

which is an abelian subvariety of X, and let ¢: X — Z := X/Y be the quotient.
(i) Show that ¢r: X — X! factors as ¢, = ¢'o1)oq for some homomorphism v: Z — Z°.
(ii) Show that there is a finite separable field extension & C K and a line bundle M on Zg such

that @bK = ©M-
(ili) With K and M as in (ii), conclude that the class of L ® ¢* M ! lies in Picqu(K).
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84. Polarizations associated to line bundles on torsors.

We begin this section by extending the definition of an action of a group scheme G on
a scheme P to the situation where G and P are only assumed to be fppf sheaves. This is a
straightforward generalization of the definitions given in Chapter 7?7 and mainly serves to recall
the notation. Unless indicated otherwise, “fppf sheaf” in this section means “fppf sheaf of sets”,
and group actions are actions from the left.

(11.31) Let S be a scheme. We recall from ?? that an S-scheme defines an fppf sheaf on Sch /g,
and that this gives an embedding of the category Sch,g as a full subcategory of the category
FPPF(S). If an fppf sheaf X is isomorphic to the sheaf defined by a scheme then we shall simply
say that X is a scheme.

If X and Y are fppf sheaves on S then we have a product sheaf X xg Y, whose set of
sections over an S-scheme 7' is the product set X(7T') x Y(T'). If X and Y are both S-schemes
then the sheaf X xg Y is of course just the sheaf defined by the scheme X xg Y. Note that
the category FPPF(S) has (the sheaf defined by) S as a final object, so X xgY is the ordinary
product of X and Y in the category FPPF(S).

(11.32) Definition. Let G be a sheaf of groups for the fppf topology, and suppose given an
fppf sheaf P.
(i) An action of G on P is a morphism of fppf sheaves

p:GxgP— P

such that for every S-scheme T the map p(T): (G xs P)(T) = G(T) x P(T) — P(T) defines an
action of the group G(T') on the set P(T'). If there is no risk of confusion, we simply write ¢ - p
for p(T)((g,p))

(ii) If we have actions of G on sheaves P; and P, then a sheaf morphism f: P, — Ps is
said to be G-equivariant (with respect to the given actions), if f(T'): Py(T) — Py(T) is G(T)-
equivariant for all S-schemes T'.

(iii) Given an action p as in (i), we define the graph morphism

\I/:\IJP:GXSP%PXSP

to be the morphism of sheaves with W(7T'): G(T)x P(T") — P(T)x P(T') given by (g,p) — (g-p,p).

(11.33) Definition. Let S be a scheme. Let G be an fppf sheaf of groups over S.

(i) Consider an fppf sheaf P: Sch?gp — Sets with a left action p: GxgP — P of G. Then P,
or more precisely the pair (P, p), is called a G-torsor if the following two conditions are satisfied:

(a) the unique morphism of fppf sheaves P — S is an epimorphism;

(b) the graph morphism ¥: G xg P — P Xg P is an isomorphism.

(ii) If P, and P, are G-torsors then a morphism of torsors P; — P, is a G-equivariant
morphism of sheaves.

(11.34) Remarks. (i) Condition (a) is satisfied, in particular, when P is an S-scheme such that
the structural morphism P — S is faithfully flat and of finite presentation. This will usually be
the case in the examples that we want to consider later. On the other hand, as we shall see in
(11.37) below, if we want to set up the general theory there is some advantage in allowing P to
be a sheaf.
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(ii) We have chosen here to work with sheaves on the fppf site of S. The same definition
of a G-torsor can be made for other topologies. For a comprehensive treatment we refer to
Giraud [1].

(iii) In practise, when we refer to a torsor we often do not specify the G-action, leaving it
implicit or assuming it is clear which action is meant.

(11.35) Assume G — S is an epimorphism of fppf sheaves. The simplest example of a G-torsor
is to take P = (G, with G acting on itself by left translations. In this case p: G xg G — G is just
the group law. The graph morphism ¥ is indeed an isomorphism; its inverse is the morphism
G xg G — G xg G given on points by (g1,92) — (glgz_l,gz). We refer to this G-torsor as
the trivial G-torsor. More generally, we say that a G-torsor is trivial is if it isomorphic, as a
G-torsor, to the trivial G-torsor.

If T"— S is a morphism of schemes then we can pull-back torsors. Namely, if P is a G-
torsor, write Pr for the restriction of P to Schy. (See 7?7) The T-group scheme G acts on Pr
and one easily checks that this makes Pr into a Gp-torsor. We shall usually refer to Pr as the
restriction of P to T.

Condition (b) in the definition of a torsor can be interpreted by saying that locally for the
fppf topology, P is trivial. Namely,.... As we shall see in Prop. (11.39) below, if G is smooth
over S (which is usually the case in the situations we want to consider) then P is trivial even
étale locally on S.

(11.36) Proposition. (i) Let P, and P> be G-torsors over S. If f: P, — P, is a morphism of
G-torsors, it is an isomorphism.
(ii) A G-torsor P is trivial if and only if P has a global section, i.e., if P(S) # 0.

Proof.(To be written) O
Part (i) of the proposition shows that the category G-Tors of G-torsors over S is a groupoid,
i.e., all morphisms in this category are isomorphisms.

(11.37) Twisting .... (to be written)

(11.38) Proposition. (i) line bundles and Gm-torsors
(ii) vector bundles and GL-torsors
(iii) Jac™ is a torsor under J = Pic’.

(11.39) Proposition. Suppose G — S is a smooth S-group scheme. If P is a G-torsor then
there exists an étale covering { Sy }aca of S such that that the restrictions of P to S, are trivial
for all o« € A.

Proof.(To be written) O
(11.40) Let X be an abelian variety over a field k. If P is an X-torsor then P is automatically
a scheme; for a proof of this we refer to Raynaud [3], Chap. XIII, Prop. 2.6. It follows from
Prop. (11.39) that P; = X7. The general results mentioned in ?? therefore imply that Picp/y

exists as a k-scheme.
We define a morphism of schemes

Qa: PICX/k X P — PiCp/k
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as follows. Let T be a k-scheme, and suppose we have a line bundle L on X7 and a T-valued
point p € P(T). As we have seen in ??, the point p gives rise to an isomorphism 7,: X7 — Pr,

and 7, 1*(L) is a line bundle on Pp. The map given by (L, p) — 7, 1*(L) defines a morphism of

P
presheaves Py, x P — Pp/;,, and we define & as the induced morphism on associated sheaves.

Let X act on Picx/;, by sending (z, L) to ¢;(L). We claim that & induces a morphism
Q. PiCX/k XX P — PiCp/k .

To see this, suppose we have p € P(T'), a line bundle L on X7 and a point = € X(T'). (To
be written).

(11.41) Proposition. Let X be an abelian variety over a field k, and let P be an X-torsor.
Then the morphism a: Picx g xX P — Picpy, defined above is an isomorphism, and it induces
isomorphisms

a?: Picg(/k - Pic(}g/k and axs: NSy, — NSp/ .

Proof.(To be written) O

(11.42) In the earlier chapters we have made heavy use of the homomorphism ¢r: X — X*
associated to a line bundle L on X. Prop. (11.41) allows us to generalize the construction of
this homomorphism, where now as input we no longer need a line bundle on X itself but we can
associate a homomorphism ¢y, to any line bundle on an X-torsor.

To explain the idea of the construction, suppose P is an X-torsor and L is a line bundle
on P. If z € X (k) then we have the action p,: P — P of x on P. Then the line bundle
pi(L) ® L™! defines a class in Pic(])p/k, and we can define pr: X — X! = Picg(/k by composing
the map x — [p%(L) ® L™!] with the inverse of the canonical isomorphism a°.

The quickest way to give a formal definition is to consider the homomorphism
Yp = tpoags: NSp, — Hom™™ (X, X") C Hom(X,X")
obtained by composing the inverse of ang with the homomorphism 1 of 77.

(11.43) Definition. Let X be an abelian variety over a field k. Let P be an X-torsor. If L is
a line bundle on Pr for some k-scheme T we define

por: X — X{’p

to be the symmetric homomorphism corresponding to the image of [L] € NSp/,(T) under the
homomorphism p of 77.

Of course, we may also describe ¢y by elaborating on the pointwise construction given
above. For this, we again start with a line bundle L on X7, and we associate to this the line
bundle M := p*(L) @ pr3(L)~! on X7 x7 Pr. Viewing M as a family of line bundles on Pr
parametrized by Xr, it defines a morphism X7 — Picp, ;7 = (Pic P/k Xk T). Because it sends
the zero section of Xr to the identity section of Picp, 7, we in fact have a homomorphism
Xt — Picop/k x T, and ¢y, is now obtained by composing with the inverse of a®.

In view of the isomorphism ayg in Prop. (11.41), it may seem that we have gained nothing.
However, in practise the easiest way to define a point of a Néron-Severi group scheme, is to
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give a line bundle. But in general, not all points of NSy /;(k) can be obtained by giving a line
bundle on X over the given ground field. So it may be that a given point of NSy (k) cannot
be represented by a line bundle on X, while it can be defined by a line bundle on an X-torsor.
Better still, we claim that for every point £ € NSy, (k) we can find an X-torsor P and a line
bundle L on P such that ang(&) = [L]. 777777
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§5. Symmetric line bundles.

(11.44) Let L be a line bundle on an abelian variety X. Recall that L is called a symmetric
line bundle if [-1]*L = L. If L is symmetric then, by definition, there exists an isomorphism
r: L = [=1]*L. The set of all such isomorphisms is then a torsor under the group Aut(L) =
I'(X,0x)* = k*, and this allows us to rescale r in a unique way such that on the fibres over 0
it is the identity. (Here, of course, we use the canonical identification 0*[—1]*L = 0*L.) So we
find that there is a unique isomorphism s: I — [—1]* L such that s is the identity on the fibres
over the origin 0 € X (k); we call this s the normalized symmetry of L.

Let L again be a symmetric line. As [—1]x is the identity on the 2-torsion subscheme
X[2] C X, the normalized symmetry s: L — [—1]*L restricts to an automorphism of the
line bundle L;x(2) over X[2]. Such an automorphism is the multiplication by a global section
er € T'(X[2], O}}[Q]). In concrete terms, if 2 € X[2](k) is a k-rational 2-torsion point then on
the fibre over = the normalized symmetry s is multiplication by e (z). (More generally, this
holds for scheme-valued points.)

We know that X[2] is a finite (and hence affine) group scheme; if A = I‘(X [2],0 X[g]) is the
corresponding k-algebra then e, is an element of A*. If char(k) # 2 then X|[2] is an étale group
scheme, so over k = k, we can view £, as a function X[2](k) — k*. Note that this function will
not, in general, be a homomorphism.

(11.45) Lemma. Let X be an abelian variety over a field k.

() If L is a symmetric line bundle on X with normalized symmetry s: L — [~1]*L then
[—1]*(s)°s is the identity on L. (Here we identify [—1]*[-1]*L = L.)

(ii) The section e, € T'(X[2], O}}[Q]) defined above satisfies €2 =1, and e, (0) = 1.

(iii) If L and M are symmetric line bundles on X then so is L® M, and epon = €1 - € -

(iv) If f: X — Y is a homomorphism of abelian varieties and M is a symmetric line bundle
on'Y then f*M is a symetric line bundle on X and eppr = f#(epr).

(v) Suppose L% = Ox, so that L defines a 2-torsion point [L] € Xt[2](k). Consider the
corresponding character ex(—, L): X[2] — Gp,. Then ey, is the image of 1 € (G, OF, ) under
ea(—, L)#: T(G,,,0f ) — I(X[2], ;[Q}).

In order to make some of the statements a little more concrete, it is useful to consider the
case where k = kg and char(k) # 2. As explained, ¢, can in that case be viewed as a function
X([2](k) — k*. Point (ii) of the lemma says that e (z) € {£1} for all 2-torsion points z, and
(v) says that if L®2 & Oy then ey, (z) = ea(x, L).

Proof. To be written. g
(11.46) Definition. A line bundle L on an abelian variety X is said to be totally symmetric if
it is symmetric and if moreover e, = 1.

In other words, total symmetry is defined by the requirement that the normalized symmetry
s: L = [=1]*L restricts to the identity on the line bundle L|x o) over X[2].

It is in fact easy to write down examples of totally symmetric line bundles. Namely, if M
is any line bundle on X then M ® [—1]*M is totally symmetric.

(11.47) Definition. Let X be an abelian variety over a field k. The Kummer variety of X is
the quotient Kumy := X/(+1) of X modulo the action of the group {idx, [~1]x }.
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If there is no risk of confusion we shall usually simply write (+1) for the group {idx, [~1]x }.
The action of this group is not free (unless X = 0); the fixed point subscheme is the 2-torsion
subscheme X[2] C X. If X is an elliptic curve then Kumyx = P!. If g = dim(X) > 1 then
Kumy is singular.

rotSymnLBKummer (11.48) Proposition. Let L be a line bundle on an abelian variety X. Let ¢: X — Kum — X
be the quotient morphism of X to its Kummer variety. Then L is totally symmetric if and only
if there exists a line bundle M on Kumy such that L = q*M.

Proof. To be written. O
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Chapter XII. The endomorphism ring.

§1. First basic results about the endomorphism algebra.

Let X and Y be abelian varieties over a field k. If f and g are homomorphisms from X to Y
then we have a homomorphism (f + g): X — Y given on points by = +— f(x) + g(x). More

formally,
(f>9)

(f+9)=my-(f9): X =5V x;, v 2517,
This gives the set Hom(X,Y") of homomorphisms X — Y the structure of an abelian group. For
Y = X we find that End(X) has a natural ring structure, with composition of endomorphisms
as the ring multiplication.

Note that Hom(X,Y") and End(X) always refer to the homomorphisms and endomorphisms,
respectively, over the given ground field. If the context requires it, we shall use the notation
Homy (X,Y) and Endg(X). Let us also recall (see (1.17)) that for the larger set of all morphisms
of schemes X — Y, which is just Hom(X,Y) xY (k), the notation Homsc /1 (X, Y") is used. (This
larger set rarely ever plays a role in our discussions, though.)

If n € Z and f € Hom(X,Y) then we have n- f = fo[n]x = [n]yof. But for n # 0 we
know that [n]x is an isogeny, in particular it is surjective; so we find that the group Hom(X,Y)
is torsion-free. We write

Hom"(X,Y) :=Hom(X,Y)®zQ and  End’(X):=End(X)®zQ.

By definition, End’(X) is a Q-algebra. If there is no risk of confusion one simply refers to
End’(X) as the endomorphism algebra of X. (The term algebra is supposed to distinguish it
from the endomorphism ring End(X).)

(12.1) Remark. If £ C K is a field extension, we have a natural inclusion Homy(X,Y) C
Hompg (Xg,Yk), which in general is strict. The K-homomorphisms Homg (Xg, Yk ) are the
K-valued points of the k-group scheme Hom(X,Y'), which, as shown in Proposition (7.14), is
étale. Hence if k = ks we have Homy(X,Y) = Homg (X, Yk) for any field extension k& C K.
We shall further sharpen this in Corollary (12.13) below.

(12.2) Theorem. (Poincaré Splitting Theorem) Let X be an abelian variety over a field k.
If Y C X is an abelian subvariety, there exists an abelian subvariety Z C X such that the
homomorphism f: Y x Z — X given by (y,z) — y+ z is an isogeny. (So, Y +Z =X andYNZ
is finite.)

Proof. Write i: Y < X for the inclusion. Choose a polarization A\: X — X*, and let
W= Ker(X 25 Xt 5 vt).

We know from Exercise (11.1) that Ay := i’ Xoi: Y — Y is again a polarization. In particular,
Y NW is finite.

Endoms, 8 februari, 2012 (635)
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Suppose we can find an abelian subvariety Z C X of dimension dim(X) — dim(Y") with
Z C W. Then (Y N Z) is finite, and because the kernel of f: Y x Z — X is contained in
(YNZ) x (Y NZ) this implies that f is an isogeny, as desired.

Now take Z := W2 ,. By Prop. (5.31) we know that Z is indeed an abelian subvariety of X,
and Z has dimension dim(X) — dim(Y"). Further, (Y N Z) is finite, and because the kernel of
the natural homomorphism f: Y x Z — X is contained in (Y N Z) x (Y N Z) this implies that
f is an isogeny, as desired. O

(12.3) Remark. In the proof of the theorem we use the fact, proven in Prop. (5.31), that W2,
is an abelian subvariety of X. The main difficulty is that a priori (i.e., without knowing this
result) W2, might not even be a subgroup scheme of X; see Exercise (3.2). Instead of using
Prop. (5.31) we can also prove the theorem by the following argument that uses the existence
of the quotient abelian variety X/Y.

Let Y C X be an abelian subvariety. By Thm. (4.38) there exists an fppf quotient group
scheme ¢: X — @ := X/Y. Since @ is also a geometric quotient of X by Y, it is in fact an
abelian variety, of dimension dim(X) — dim(Y). The homomorphism ¢*: Q* — X' is injective
(see Exercise 7.7), and we use it to identify Q' with an abelian subvariety of X*. Choose an
isogeny p: X' — X such that Aoy = [n]x: for some positive integer n. Let Z C X be the image
of Q" under ; so Z = Q'/(Q'NKer(u)) is an abelian subvariety of X, with dim(Z) = dim(Q) =
dim(X) — dim(Y). Now note that A\(Z) C Q' C Ker(i*); hence Z C W. In particular, Z NY is
finite, and as in the above proof it follows that the natural homomorphism ¥ x Z — X is an
isogeny. O

(12.4) Definition. A non-zero abelian variety X over a field k is said to be simple if X has no
abelian subvarieties other than 0 and X. We say that X is elementary if X is isogenous (over k)
to a power of a simple abelian variety, i.e., X ~j Y™ for some m > 1 and Y simple.

Note that an abelian variety that is simple over the ground field k£ need not be simple over
an extension of k. To avoid confusion we sometimes uses the terminology “k-simple”. If X is
simple over a separably closed field k then it follows from Remark (12.1) that X, is simple for
every extension k C L.

(12.5) Corollary. A non-zero abelian variety over k is isogenous to a product of k-simple

abelian varieties. More precisely, there exists k-simple abelian varieties Y1,...,Y,, no two of
which are k-isogenous, and positive integers mq,...,m, such that
X~ Y X x Y (1)

Up to a permutation of the factors, the abelian varieties Y; that appear in this decomposition
are unique up to k-isogeny, and the corresponding multiplicities m; are uniquely determined.

Proof. The existence of a decomposition (1) is immediate from the Poincaré Splitting Theorem.
The uniqueness statement is an easy exercise—note that a homomorphism between two simple
abelian varieties is either zero or an isogeny. 0

(12.6) Definition. Let k be a field. We define the category of abelian varieties over k up to
isogeny, notation QAV , to be the category with as objects abelian varieties over k and with

Homgay ,,, (X,Y) = Hom"(X,Y) := Homay ,, (X,Y) ®z Q.
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If X and Y are abelian varieties over k then an element f € Hom®(X,Y) is called a quasi-
isogeny if f is an isomorphism in the category QAV .

To explain the terminology, notice that an element f € Hom?(X,Y) is a quasi-isogeny if
and only if there is a non-zero integer n such that nf is an isogeny from X to Y. In particular,
two abelian varieties give isomorphic objects of QAV ; if and only if they are k-isogenous.

(12.7) Corollary. If X is k-simple then End(X) is a division algebra. For X as in (1) we
have, writing D; := End)(Y;),

End(X) = M,,, (Dy) X --- X My, (Dy,).
(Recall that M,,(R) denotes the ring of m x m matrices with coefficients in the ring R.)

Proof. Let us (again) remark that a homomorphism between two k-simple abelian varieties
is either zero or an isogeny. But the isogenies from X to itself are invertible elements of
End)(X). Soif X is k-simple End)(X) is a division algebra. For the second statement, note that
Hom(Y;,Y;) = 0if i # j, as it was assumed that Y; and Y} are simple and non-isogenous. ]

In categorical language, we have shown that QAV /;, is a semi-simple category.

To obtain further results, we shall investigate homomorphisms f: X — Y via the induced
maps Ty f on Tate-f-modules, or the maps f[p>] on p-divisible groups. We shall usually state
results in both settings. If p # char(k) then statements about f[p>] can also be phrased in
terms of Tate modules, and it is this formulation that is most often used. (This is based on
the sentiment that ordinary groups with Galois action are conceptually easier than étale group
schemes.) Hence our main interest in results about f[p>] is in the case that char(k) = p > 0,
even though this is often irrelevant in the proofs.

(12.8) Lemma. Let X and Y be abelian varieties over a field k, and let f € Hom(X,Y).

(i) Let ¢ be a prime number, £ # char(k). If Ty(f) is divisible by ¢™ in Homg, (T, X,T,Y)
then f is divisible by ¢ in Hom(X,Y).

(ii) Let p be a prime number. If f[p>] is divisible by p™ in Hom (X [p>],Y [p>°]) then f is
divisible by p™ in Hom(X,Y").

Proof. The divisibility of T;(f) means that f vanishes on X [¢(™](ks). But X [¢™] is an étale group

scheme (¢ # char(k)), hence f is zero on X[¢™]. This means that f factors through [¢"]x.
The argument for (ii) is essentially the same: if f[p>°] is divisible by p™ then f vanishes

on X [p™]; hence it factors through [p™]x. O

If Ty(f) = €™ - ¢ for some ¢ € Homg, (13 X,T,Y) then the element g € Hom(X,Y) such
that ¢™ - g = f is unique (as Hom(X,Y) is torsion-free), and it follows from Theorem (12.10)
below that Ty(g) = ¢. Similarly, if f[p>°] = p™ - ¢ then there is a unique g € Hom(X,Y") with
p™ g =f,and g[p>] = ¢.

(12.9) Lemma. Let X be an abelian variety, and let L be an ample line bundle on X. Then
the form Br: End(X) x End(X) — Z given by

Br(f.g) = (L) e((f+9) Lo fflL oy L)
is bilinear and positive definite.
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Note that by slight abuse of notation we write ¢1(L)9~" - ¢1 (M) for deg(ci(L)9™1 ¢ (M)) =
[x c1(L)971 - e (M); cf. the remark following Thm. (9.11).

Proof. Consider the map ¢: End(X) — CH'(X) given by f — ¢, (f*L). Tt follows from the
Theorem of the Cube, Cor. (2.8), together with Exercise (2.5) that the map bz: End(X) x
End(X) — CH'(X) given by

br(f,9)=a(f+9)—a(f) —alg) =a((f+9)'Le f L' ®g L")

is bilinear. But if h: CH*(X) — Z is the linear map given by & — ¢;(L)9~" - € then By, = hoby;
hence By, is bilinear too.

It remains to be shown that By (f, f) > 0 for all non-zero f € End(X). Note that (2f)*L®
(f*L)=2 = f*([2]*"L) ® f*L™? is algebraically equivalent to f*L* @ f*L=2 = f*L? Hence
Br(f,f) = 2-c1(L)971 - ci(f*L). Because L is ample, it suffices to show that c¢;(f*L) is an
effective class if f # 0. Further, as Bpn(f, f) = n9 - Bp(f, f) we may assume that L is very
ample. If f # 0 then Y := f(X) C X is an abelian subvariety of X of positive dimension,
and there is an effective divisor D = ) n;D; on Y such that Ly = Oy (D). But f: X — Y is
flat (see Exercise (5.1)), so f*L is represented by the divisor > n;[f 1 D;], where [f~1D;] is the
divisor class associated to the scheme-theoretic inverse image of D;. In particular, ¢, (f*L) is an
effective class, and the positivity of By, follows. O

(12.10) Theorem. Let X and Y be abelian varieties over a field k.
(i) If £ is a prime number, ¢ # char(k) then the Z,-linear map

Ty: Hom(X,Y) ® Zy — Homg, (T, X, T,Y)

given by f ® ¢+ c-Ty(f) is injective and has a torsion-free cokernel.
(i) If p is a prime number, the Z,-linear map

®: Hom(X,Y) ® Z, — Hom(X[p™], Y [p>])
given by f ® ¢ — c- f[p*] is injective and has a torsion-free cokernel.

Proof. (i) We first prove that T, has a torsion-free cokernel. Notice that Coker(7}) is a Z,~-module,
so it can only have ¢-power torsion. Suppose we have ¢ € Homg, (T, X,T,Y) and ) fi®¢; €
Hom(X,Y) ® Zy such that ™ - = > ¢; - Ty(f;). Choose integers n; with n; = ¢; mod ™,
and write ¢; = n; + 0™ - d; with d; € Zy. Then f := > n;f; is an element of Hom(X,Y"), and
To(f) = ™ (¢ — S diTe(f:)) is divisible by ¢™. By Lemma (12.8) there exists an element
g € Hom(X,Y) with Ty(g) = ¢ — >_ d;Ty(f;). Hence ¢ is in the image of the map Ty, which is
what we had to prove.

Now we prove that Ty is injective. We first reduce to the case that Y = X. For this, put
Z := X x Y. Then we have a commutative diagram

Hom(X,Y) —% Homg, (T, X, T,Y)

! !

End(Z) <%  Endg,(T,7)

where the left vertical map sends f: X — Y to the endomorphism (z,y) — (0, f(z)) of Z, and
where the right vertical map is defined similarly. As the left vertical map is clearly injective,
this reduces the problem to the case X =Y.
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Suppose there exist linearly independent elements f1, ..., f, € End(X) and non-zero ¢-adic
integers ¢y, ..., c, such that

aly(fi)+-+eT(f) =0. (2)

We may assume that r is minimal, i.e., there is no such relation with fewer terms. Choose an am-
ple bundle L and let B = By: End(X) x End(X) — Z be the form considered in Lemma (12.9).
In (2) we may assume that B(f1, f;) = 0 for all j € {2,...,7}; to achieve this, replace ¢; by
> k1 B(fx, f1) - ¢k, and for j > 2 replace f; by B(f1, f1)- fj — B(fj, f1)- fi1. (Note that the new
elements f; are again linearly independent.)

Let m be a positive integer. Choose integers n; with n; = ¢; mod ™. Then ¢ := nqf1 +
-+ ++n,f, is an endomorphism of X such that T(g) divisible by ¢". By Lemma (12.8) there is an
h € End(X) such that g = ¢™ - h. Hence ny - B(f1, f1) = B(g, f1) is divisible by ™, and by our
choice of ny it follows that c¢; - B(f1, f1) is divisible by ¢™. But m was arbitrary, and B(f1, f1)
is a fixed positive integer. Hence ¢; = 0, contradicting the minimality assumption on r.

The proof of (ii) is essentially the same; we leave it to the reader. O

(12.11) Corollary. If X and Y are abelian varieties over k then Hom(X,Y") is a free Z-module
of rank at most 4dim(X)dim(Y). In particular, End(X) is a finite dimensional semi-simple
Q-algebra, of dimension at most 4 dim(X)?2.

Proof. We already know that Hom(X,Y") is torsion-free. The upper bound for the rank is imme-
diate from the theorem, as Homgz, (T, X,T;Y) is a free Z,-module of rank 4dim(X)dim(Y). O

(12.12) Corollary. If X is a g-dimensional abelian variety over a field k then its Néron-Severi
group NS(X) is a free Z-module of rank at most 4g>.

Proof. By Corollary (7.26) we have NS(X) — Hom™™ (X, X*!). O

(12.13) Corollary. Let X and Y be abelian varieties over a field k. Fix a separable algebraic

closure k C kg. Then there is a finite field extension k C K inside ks which is the smallest field

extension over which all homomorphisms from X to Y are defined, by which we mean that K

has the following two properties:

(a) for any field extension K C L we have Homy (X, Y ) — Homp (X1, Y7);

(b) if Q is a field containing ks and F C ) is a subfield with k C F and Homp(Xp,Yr) —
HOmQ(XQ,YQ), then K C F.

Proof. As Hom(X,Y) is an étale group scheme, this assertion is just a matter of Galois theory.
Choose generators f1,..., f, of Homy_ (X ,Yk,) as an additive group. Let I'; C Gal(ks/k) be
the stabilizer of f; under the natural continuous action of Gal(ks/k) on Homy, (Xk,,Ys,). Each
I'; is an open subgroup of Gal(ks/k). Now let K C kg be the fixed field of 'y N--- N T,; it is the
smallest subfield of ks over which the f; are all defined. Because the f; generate Homy,_(Xy_, Yx.)
the group scheme Hom(X,Y) becomes constant over K; hence (a) holds. If F'is as in (b) then
the f; are all defined over K N F' (intersection inside 2), and by definition of K it follows that
K C(KNF),ie, KCF. 0

§2. The characteristic polynomial of an endomorphism.
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(12.14) Let X be an abelian variety of dimension g over a field k. If W is a Q-vector space
then a map v: End(X) — W is said to be homogeneous of degree m if y(n - f) = n™ - y(f)
for all f € End(X) and all n € Z. Any homogeneous map 7 naturally extends to a map
v: End®(X) — W: write g € End®(X) as g = ¢ - f for some ¢ € Q and f € End(X), and then
set v(g) = q™ - y(f)-

We appply this to the map deg: End(X) — @Q, which is homogeneous of degree 2g. Note
that, by convention, deg(f) = 0 if f € End(X) is not finite. By the procedure that we have just
explained, this degree map extends to a map deg: End’(X) — Q, with deg(q - f) = ¢%9 - deg(f)
for g € Q and f € End(X).

(12.15) Proposition. The map deg: End®(X) — Q is a homogeneous polynomial map of
degree 2g. This means that if e, ... e, is a basis for End®(X) as a Q-vector space, then there
is a homogeneous polynomial D € Q[tq,...,t,] of degree 2g such that

deg(clel + - +cu€u) = D(Cla' .. ,Cu)

for all ¢; € Q.

Proof. Let L be a symmetric ample bundle on X. Then the map v: End(X) — CH}@ (X) given
by f +— c1(f*L) is homogeneous of degree 2, so by what was explained in (12.14) it naturally
extends to a map : End®(X) — CHg(X). By Cor. (9.12), deg(f) = c1(f*L)9/ci(L)? for all
f € End(X); note that this also holds if f: X — X is not an isogeny, for in that case the
Riemann-Roch Theorem (9.11) gives x(f*L)? = deg(¢s+1) = 0. Hence it suffices to show that
the map ~ is a homogeneous polynomial map of degree 2.

As we have seen in the proof of Lemma (12.9), the map b: End(X) x End(X) — CH'(X)
given by b(f,g9) = c1 ((f +g)*L® f*L~t ®g*L‘1) is bilinear. Also, b is clearly symmetric. But,
again using the assumption that L is symmetric, v(f) = (1/2) - b(f, f). From this it readily
follows that v is polynomial of degree 2. O

(12.16) Definition. Let X be an abelian variety over k. If f € End(X) then by the proposi-
tion there is a monic polynomial P = Py € Q[t] of degree 2¢ such that P(n) = deg([n]x — f)
for all n € Z. We call P, which is uniquely determined, the characteristic polynomial of f. If
P= E?io a;t' then we define the trace of f by trace(f) :== —agg_1.

In this context, the degree of an endomorphism f is also sometimes referred to as the norm
of f; so, with the previous notation, Norm(f) := deg(f) = ao.

(12.17) Lemma. Let Q be a field of characteristic zero. Let A be a semisimple Q-algebra of
finite Q-dimension, and let A = A; x --- X Ay be the decomposition of A into a product of
simple factors. Let Nrdy, q: A; — @Q be the reduced norm of A; over Q). Suppose §: A — Q is
a nonzero map that has the following two properties:

(a) § is a homogeneous polynomial map;

(b) ¢ is multiplicative, meaning that 6(ab) = §(a)d(b) for all a, b € A.

Then there exist integers nq,...,ny such that

5(&1, PN ,ah) = NrdAl/Q(al)"l < -NrdAh/Q(ah)"h
for all (ay,...,ap) € A=Ay X -+ X Ap.
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Proof. By (b) we have d(ay,...,ap) = 6(a1,1,...,1)-6(1,a9,1,...,1)---6(1,...,1,ap). Since
the function that sends a; € A; to 6(1,...,1,a;,1,...,1) is again homogeneous polynomial and
multiplicative, it suffices to treat the case h = 1. So from now on we assume that A is a simple
Q-algebra. Let K be its centre, which is a finite field extension of (). Choose an algebraic closure
Q of Q, and let ¥ be the set of embeddings o: K — @ that extend the given embedding Q — Q.

Let ey, ..., e, be an ordered basis for A as a vector space over (). Assumption (a) just means
that there exists a homogeneous polynomial D € Qlty,...,t,] such that §(cie; + -+ + cyey) =
D(cy,...,cy) for all ¢1,...,¢, € Q. Because @ is infinite, D is uniquely determined. For any
field extension ) C L the map & therefore uniquely extends to a homogeneous polynomial map
0r: Ap == L ®g A — L. Moreover, because A is Zariski dense in Ay, the extended map dy, is
again multiplicative.

We have

— = H A,  with A, =Q®,x A.
oEX

If m is the degree of A as a central simple K-algebra, each factor A, is (non-canonically)
isomorphic to M,,(Q). Write 6,: A, — Q for the map given by a, 55(1’ oo lag,1,.0001).
Because 0, is multiplicative and ¢ is not the zero map, d,(a) € Q* for every a € A;. Choosing
an isomorphism ¢,: A, — M,,(Q) we conclude that J, gives a character of GL,, over @, that
is, a homomorphism of algebraic groups d,: GLm@ — Gm@. But any such character is of the
form det” for some integer v; see ??. Note that the integer v does not depend on the choice of ¢,
as by the Skolem-Noether theorem all automorphisms of M,,(Q) are inner automorphisms.

We conclude that there exist integers (o) such that 56 is given by

5Q ay) o—eg H 0y (ay) H det(La(aa))V(a) .

ceX oceX

Let us also note that the reduced norm map Nrd,,q: A — @ after extension of scalars @ C Q
gives the map Az — Q that sends (ac)oex to [, 5 det(to(ar)). So all that is left to prove is
that the exponents v(o) are all equal. To see this, note that for any ¢ € K we have

V() mua
3(c) = 65((0(c))ges) = [ det(o =1l e (3)
oceEX oEX
Now it is an easy exercise in Galois theory to see that the RHS of (3) defines a function on K
that takes values in @ only if all exponents mv (o) are equal. O

(12.18) Theorem. Let X be an abelian variety over a field k. Let ¢ be a prime number
different from char(k). For f € End’(X), let Py € Qq[t] be the characteristic polynomial
of Vof € Endg,(ViX), ie., Pps(t) = det(t-id — V,f). Then Py = P¢. In particular, the
characteristic polynomial of Vy f has coefficients in QQ and is independent of /.

Proof. We know that A := Q; ®z End(X) is a semisimple Q-algebra of finite dimension. Let
A=A x---x Ay be its decomposition into a product of simple factors. As explained in the
proof of (12.17) the degree map f — deg(f) extends uniquely to a homogeneous polynomial
map d1: A — Qp of degree 2g.

The function d3: A — Qg given by f +— det(Vyf) is also a homogeneous polynomial map
of degree 2g. As ¢; and Jy are both multiplicative, we can apply Lemma (12.17) to each. We
conclude that there exist integers n; and v; such that for any f = (f1,..., fn) € A4,

61(f) = Nrda, sq,(f1)"* -~ Nrda, s, (fa)""

— 186 —



P1fPfCorl

PfIntegral

P1fPfCor2

V1XfreeQlf

and
02(f) = Nrd 4, sq,(f1)"* -~ Nrda, sq, (fn)"

To get further information, we consider the f-adic valuation v: Qy — Z U {oco}. Let & :=
End(X) N End’(X)* be the monoid of isogenies X — X. If f € & we can write N := Ker(f)
as N = N, x N¢, with N* a group scheme of order prime to ¢ and N, of /-power order, say
#Ny = (*. We have v(deg(f)) = a. On the other hand, we have seen in Proposition (10.6)
that Ty f: Ty X — Ty X is injective with cokernel Ny(ks). Because ¢ is relatively prime to char(k)
the group scheme Ny is étale, so Ny(ks) is just an ordinary abelian group of order ¢*. From the
theory of elementary divisors it then follows that ’U(det(‘/g f )) = q as well.

Any ¢ € End’(X)* can be written as ¢ = ¢ - f for some ¢ € Q* and f € &. As 6, and &,
are both homogeneous of degree 2g, it follows that v(deg(¢)) = v(det(V;)). Now the set

{feA

v(81(f)) :v(éz(f))}

is closed in A for the ¢-adic topology, and we have just shown that it contains End”(X)*. But
End®(X)* is f-adically dense in A, so we conclude that v(61(f)) = v(02(f)) for all f € A.
Applying this to all elements of the form (1,...,1,¢,1,...,1) € A= A; x--- X A, we find that
n; = v; for all 7. O

(12.19) Corollary. For any f € End’(X) we have P;(f) = 0.

(12.20) Corollary. If f € End(X) then Py has integral coefficients.

Proof. Let f € End(X). Because End(X) is finitely generated as an additive group, there is a
monic @ € Z[t] with Q(f) = 0. But then also Q(Vzf) = 0, which implies that all eigenvalues of
Vo f are algebraic integers. So the coefficients of P, ; = Py are rational numbers which are at
the same time algebraic integers; hence they are integers. O

(12.21) Corollary. For f, g € End’(X) we have the relations

deg(fg) = deg(f) -deg(g), trace(f+ g) = trace(f)+ trace(g), and trace(fg) = trace(gf).

If p is a prime number and f € End”(X) then it follows from Cor. (12.19) that Py (f[p>=]) =
0. One naturally wonders if P can also be interpreted as the characteristic polynomial of f[p™]
as an endomorphism of the p-divisible group X[p>°]. (??Nog verder uitwerken. Later bewijzen
dat Py ook het char pol is van f op de kristallijne cohom??)

(12.22) Remark. Let X be a simple abelian variety over a field k, so that End®(X) is a division
algebra. If f € End’(X) then Q[f] € End’(X) is a number field, and Q,[f] := Q; ®¢ Q[f] is
a product of finite field extensions of Qy, say Q¢[f] = L1 x --- x L;. Correspondingly we have
a decomposition V)X =V; @ --- @ V;. The fact that P s has coefficients in Q means precisely
that VX is free as a module over Q[f], or, equivalently, that d; := dimy,(V;) is independent
of 7. To see this, let h be the minimum polynomial of f over Q. Let h = hq --- hy be the prime
factorisation of h in Qq[t], so that L; = Q[t]/(h;). Then Py ; equals h{" --- h{*. Now it is an easy
exercise in Galois theory to see that ] h?i has coefficients in Q if and only if all exponents d;
are equal.

It is not true, in general, that V; X, as a module over End’(X), is “defined over Q”. That
is, in general there is no End’(X)-module W such that V,X = Q ®g W as modules over
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Q¢ ®q EndO(X ). The easiest counterexample is provided by a supersingular elliptic curve X
over an algebraically closed field of characteristic p. In this case D := End"(X) is a quaternion
algebra with center Q, and if W is any left D-module of finite type then the Q-dimension of W is
divisible by 4, whereas V; X is 2-dimensional. Such examples only occur in positive characteristic,
and this has interesting consequences for the types of endomorphism algebras that can occur.
We shall come back to this in 77 below.

§3. The Rosati involution.

(12.23) Let A: X — X! be a polarization. If f € End’(X) then we have f* € End’(X?), and
in End’(X) we can form the element f1:= X\=1o fto:

X =5 Xt
ft
—1
X &£ Xt

Note that in general the arrow A~! only exists in the category of abelian varieties up to isogeny:;
unless ) is a principal polarization it does not exist as a true homomorphism X! — X. If we want
to stay in the usual category of abelian varieties, consider a homomorphism p: X* — X such that
oA = [n]x for some n > 0, and write f = (1/m) - g for some g € End(X) and m € Z~(. Then
h := pogto X is a true endomorphism of X, and by definition we have f1 := (1/mn)-h € End®(X).

It is readily checked that the map f: End®(X) — End’(X) given by f — f1 is additive,
that (fog)" = gTo fT, and that (f1)t = f. Hence t is an involution of the algebra End®(X). It
is called the Rosati involution associated with A.

Note that t does not necessarily preserve the subring End(X) ¢ End’(X), but if ) is a
principal polarization then of course it does.

The Rosati involution depends on the chosen polarization. If u: X — X is another polar-
ization then a := A\~'op is a well-defined element of End’(X), and we can write p = Aoa. If
f — f*is the Rosati involution associated to u then ff=a 'offoa.

Note that deg(fT) = deg(f) for all f. As [n]g< = [n]x, it follows that in fact Py = Py; in
particular also trace(f!) = trace(f).

(12.24) Lemma. Let X be an abelian variety over a field k. Let { be a prime number with
¢ # char(k). Let \: X — X' be a homomorphism, f — fT the associated Rosati involution, and
let E*: V;X x V,X — Qu(1) be the Riemann form of \. Then for all f € End(X) and all x,
y € Vp X we have

EXMVif(x),y) = Mz, Vefi(y)) -

In other words, if ¢ +— ¢* is the adjoint involution on Endg,(V,X) associated with the pair-
ing E*, the map V;: End®(X) — Endg, (V;X) is a *-homomorphism of algebras with involution.

Proof. Let E: V, X x V,X* — Q be the Q-linear extension of the pairing defined in (11.23), so
that E*(z,y) = E(z, VeA(y)).
By definition of the Rosati involution we have VyAo Vo fT = Vo (Ao f1) = V, ft o VyA. Hence

BN, Veft(y)) = E(x, Vif*=Vi(y)) -
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By (i) of Prop. (11.21) this equals E(Vef(z), VeA(y)) = E* (Vef(z),y). O

dagSymnElts (12.25) Proposition. Let X be an abelian variety over a field k. Let A be a polarization of X,
and let f — f! be the associated Rosati involution on End’(X). Then the map NS(X) —
End®(X) given by [M] — M=oy induces an isomorphism of Q-vector spaces

it NS(X)®Q = {f € End’(X) | f=fT}.

In particular, the Picard number of X equals the Q-dimension of the space of f-symmetric
elements in End’(X).

Proof. By Cor. (11.3) the map [M] — ¢y gives an isomorphism NS(X) — Hom™™ (X, X*);
hence also NS(X) ® Q = Hom”*¥™(X, X*). Now consider the isomorphism End’(X) —-
Hom®(X, X*) given by f ~— Aof. Using that A = A one easily checks that under this iso-
morphism the f-symmetric elements of EndO(X ) correspond with the symmetric elements in
Hom’ (X, X?). O

TracePos (12.26) Theorem. (Positivity of the Rosati involution) Let X be an abelian variety of dimen-
sion g over a field k. Let 1 be the Rosati involution associated with a polarization .
(i) If A = ¢y for some ample bundle L then for f € End(X) we have

by AL e (fL)

trace(ffT) = AT

(ii) The bilinear form End®(X) x End’(X) — Q given by (f,g) — trace(f - g1) is symmetric
and positive definite.

Part (ii) of the theorem can be reformulated by saying that the Rosati involution is a
positive involution; see Appendix A, (A.11).

Proof. (i) By Prop. (7.6) we have @p, = flopr o f. Hence for all n € Z we get

deg(ppr-19rn) = deg(npr — pg-1)
= deg(npr — fforf)
= deg(prn— oL f1f)
= deg(pr) - deg(n — fTf) = x(L)* - Piy(n).

(4)

Endoms :degcomp

Let Q € Q[t] be the polynomial (of degree g) such that Q(n) = (nei(L) — cl(f*L))g for
all n. Concretely, @ = >79_, b;jt! with b; = (?)(—1)9_j-(cl(L)j -e1(f*L)971). By Riemann-
Roch (9.11), deg(¢sr-191n) = x(f* L™ ® L™)? = Q(n)?. Comparing with (4) we find that

Prip = (X(L)_l : Q)2

as polynomials. Comparing coefficients in degree 2g — 1 this gives

trace(f f1) = trace(fTf) = —2x(L) ™' - by - by_1
=2x(L)" (D) g (L) ea(f7L))
=2g- (cl(L)g_l -cl(f*L)) )
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(ii) Symmetry of the form follows from the fact, noted in (12.23), that trace(h’) = trace(h).
To see that trace(ff1) > 0 for all f # 0 we may assume that k = k and write A = ¢, for some
ample bundle L. As f — trace(ffT) is homogeneous of degree 2, we may further assume that f
is a true endomorphism. Now use (i) and apply Lemma (12.9). O

84. The Albert classification.

(12.27) Let X be a simple abelian variety over a field k, and choose a polarization A. To the
pair (X,\) we associate the pair (D, 1) with D = End°(X) the endomorphism algebra and
the Rosati involution. We know that D is a simple Q-algebra of finite dimension and that { is
a positive involution.

Let K be the center of D (so that D is a central simple K-algebra), and let K¢ := {z € K |
2T = 2} be the subfield of symmetric elements in K. We know that either Ky = K, in which
case 1 is said to be of the first kind, or that Ky C K is a quadratic extension, in which case } is
said to be of the second kind.

By a theorem of Albert (see Appendix???) the pair (D, ) is of one of four types. For
convenience we again describe the possibilities. Recall that if A is a quaternion algebra over a
field L, its canonical involution is the involution given by a — Trds,r(a) — a. We write H for
the Hamiltonian quaternion algebra over R.

Type . Ky= K = D is a totally real field.
T =1idp.

Type II: Ky = K is a totally real field, and D is a quaternion algebra over K with D ® , R =
M5 (R) for every embedding o: K — R.

Let d — d* be the canonical involution on D. Then there exists an element a € D
such that a? € K is totally negative, and such that df = ad*a="' for all d € D.

We have an isomorphism D ®g R = [] . g M2(R) such that the involution { on
D ®q R corresponds to the involution (Ay,...,A.) — (Al ... A?).

Type III: Ky = K is a totally real field, and D is a quaternion algebra over K with D®k ,R = H
for every embedding o: K — R.

1 is the canonical involution on D.

We have an isomorphism D ®gR 22 [],. ,_ g H such that the involution f on D ®gR
corresponds to the involution (aq,...,ae) — (@, ..., &).

Type IV: K| is a totally real field, K is a totally imaginary quadratic field extension of K. Write
a +— a for the unique non-trivial automorphism of K over Kj; this automorphism is
usually referred to as complex conjugation. If v is a finite place of K, write v for its
complex conjugate. The algebra D is a central simple algebra over K such that: (a) If
v is a finite place of K with v = v then inv, (D) = 0; (b) For any place v of K we
have inv, (D) + invy(D) = 0 in Q/Z.

If m is the degree of D as a central simple K-algebra, we have an isomorphism

D@gR=][],. g, g Mm(C) such that the involution ¥ on D ®g R corresponds to the
involution (Ai,...,Ae,) — (Zfi, A ).

) 1)
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(12.28) Retaining the notation and assumptions of (12.27), write
eo = [Kop : QJ, e:=[K:Q], and m:=[D:K]"2. (5)

(So m is just the degree of D as a central simple K-algebra.)
Write D™ := {d € D | d' = d}. By Prop. (12.25), the Picard number p(X) := rank NS(X)
can be calculated as p(X) = 7 - dimg(D) = 7 - em?, where

_ dimg(D™™)
~ dimg(D)
For each of the types the factor 7 is easily calculated from the given description of D ®gR. We

find that n = 1 for Type I, n = 3/4 for Type II, n = 1/4 for Type III, and n = 1/2 for Type IV.
The invariants involved can be summarized as follows.

D D D D

| |4 |4 |m?
K K K K

| | | 2
Ko Ko Ko Ko
‘eoze ‘eoze |eoze ‘eo
Q Q Q Q

p=e p=3e p=e p = egm?

Type 1 Type II Type III Type IV

As we shall prove next, there are some numerical restrictions on eg, e and d in relation to
g = dim(X). In case char(k) = 0 the restrictions are a little stronger than when char(k) = p > 0.

(12.29) Proposition. Let (X,)\) be a simple polarized abelian variety of dimension g over a
field k. Let D = End°(X) be the endomorphism algebra and let 1 be the Rosati involution
associated with . Let K be the center of D, let Ky := {x € K | 21 = 2}, and define ey, e
and m as in (5) above.

(i) We have em|2g.

(ii) If char(k) = 0 then dimg(D) = em? divides 2g.

(iii) If L C D is a Q-subalgebra such that L C D™ then L is a field and [L : Q] divides g.

Proof. (i) We know that the norm map Norm: D — Q is multiplicative and is a homogeneous
polynomial map of degree 2¢g. By Lemma (12.17) it follows that Norm = Nrd? /o for some
natural number n. But Nrdp g is polynomial of degree em; hence em divides 2g.

(ii) For the proof of (ii) we first reduce to the case k = C. Let { f1,..., fa} be a Q-basis of D.
By EGA 1V, Prop. (8.9.1), there exists a subfield ky C k such that kg is finitey generated (as a
field) over the prime field Q, and such that X and the endomorphisms f; are defined over k.
Concretely, this means we have an abelian variety Xg over kg together with endomorphisms
fio such that there exists an isomorphism Xy ®g, k = X via which fi,0 corresponds to f;.
As the f; form a basis of D and the natural map End’(X,) — End’(X) is injective, we have
End®(X,) & D.

- 191 —



lbertRestrTable

XlambdaDdagger

Because kg is finitely generated over Q, there exists an embedding ¢: kg — C. Then
EndO(XO,C) is a finitely generated module over D = End"(X,), and because D is a divison
algebra it follows that dimg(D) divides dimg (End0 (Xo,c)). Hence it suffices to prove (i) over
k=C.

Assume then that &k = C. In this case the first homology H := H; (X (©), Q) is a Q-vector
space of dimension 2¢g that has the structure of a D-module. Because D is a division algebra,
H is a free D-module; hence dimg (D) divides dimg(H) = 2g.

(iii) For f, g € L we have fg= figt = (¢9f)' = gf, so L is a field.

We have a well-defined function x: NS(X)p — Q that sends the class of a line bundle M
to x(M). By the Riemann-Roch Theorem (9.11), this function x is multiplicative and is a
homogeneous polynomial function of degree g. (Note that we usually write NS(X) additively,
so the assertion that x is multiplicative then means that x(y1 + y2) = x(y1) - x(y2) for all y;,
y2 € NS(X)g.) Because L C D®™, we can use the isomorphism ¢ of Prop. (12.25) to define
Xxei ': L — Q, which is a multiplicative and homogeneous polynomial function of degree g
on L. By Lemma (12.17) it follows that y-i~! = Nrd} /o for some n, and because Nrdz, /g is
polynomial of degree [L : Q] we find that [L : Q] divides g. O

(12.30) As a corollary of the Proposition, we obtain that the following divisibility relations are
satisfied.

char(k) =0 char(k) =p
Type 1 elg elg
Type 11 2elg 2elg
Type 111 2elg elg
Type IV eom?|g eomlg

Table (12.30.1): numerical restrictions on the endomorphism algebra

Note that if X is of Type II, there exists a subfield L C D with L C D™ and [L : K] = 2.
Indeed, as discussed in (12.28) we have dimg (D*™) = 3, and for any o € D™ \ K we can take
L = Kla]. Now we apply (iii) of the Proposition with this L.

(12.31) Still with the assumptions and notation of (12.29), the Albert type of (D,f) does
not depend on the choice of a polarization A, and we often say that X is of Type N, with
N e {ILII,III,I1V}, when (D, ) is. If X is of Type I or III then the isomorphism class of the
pair (D, ) is independent of the choice of A, simply because t is the canonical involution on D.
In general, however, 7777

The question arises if the conditions on the pair (D, {) that we have obtained are exhaustive.
In other words, suppose we are given a characteristic p > 0, an integer ¢ > 0, and a finite
dimensional simple Q-algebra D with a positive involution . Assume the condition given in
Table (12.30.1) is satisfied. Then one may wonder if there exists a g-dimensional polarized
abelian variety (X, \) over a field k of the given characteristic such that the pair (End0 (X),1)
is isomorphic to the given pair (D, t). Though no complete answer is known in this generality,
several further results are known, and in characteristic zero the picture is fairly complete. In
particular, it is known that in characteristic 0 there always exists a polarized abelian variety
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(X, \) with the given (D, 1), except possibly when X has Type III and g/2e € {1,2} or when
X has Type IV and (g/eqm?) € {1,2}.

We refer to Oort [4] for a detailed overview. Over C the main results on this question are
obtained in Shimura [1].

Let us here, by way of example, only show that an abelian surface X cannot be of Type III.
(12.32) Remark. If £ C K is a field extension, Xx may be of a different type than X.
For instance, the elliptic curve E over Q given by the Weierstrass equation y?> = 23 — x has
End’(E) = Q, whereas over K = Q[i] we have End’(Fx) = Q[i]. So in this example, the type
of E changes from I to IV. In general, if we start with a simple abelian variety X over k then X
may no longer be simple. When X is again simple, it is clear that only certain changes of type
are possible; e.g., if X is of Type II, III or IV then X cannot be of Type 1. See Exercise 12.3.

Exercises.

(12.1) Let X and Y be abelian varieties over a field k.
(i) If £ is a prime number with ¢ # char(k), show that an element f € Hom’(X,Y) is a
quasi-isogeny if and only if V;(f): V;X — VY is an isomorphism.
(ii) If char(k) = p, show that an element f € Hom(X,Y) is an isogeny if and only if the induced
homomorphism f[p™]: X [p>°] — Y [p>°] is an isogeny.

(12.2) Let X and Y be abelian varieties over a field k. Let &k C K be a field extension.
(i) Show that the natural map Homy(X,Y) — Homg (X, Yx) has a torsion-free cokernel.
(ii) If End)(X) = End% (Xx), show that also Endg(X) = Endg (Xg).

(12.3) Let X be a simple abelian variety over a field k. Let k¥ C K be a field extension, and
suppose X is again simple. If X has Type M in the Albert clasification and Xg has Type N
(with M, N € {III,III,IV}) then we say we have the change of type M — N.
(i) Show that a change of type M — I is possible only if M = 1.
(i) Show that a change of type M — Il or M — III is possible only if either M =1 or M =1V
and m = 1.

Notes. In the proof of Thm. (12.2) one has to pay attention in the case of a non-perfect ground field, as it is
not a priori clear that (in the notation of our proof) Wr(‘)Ed is an abelian subvariety of X. In some papers this
point is overlooked; cf. Milne [1], proof of 12.1, for instance.
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Chapter XIII. The Fourier transform and the Chow ring.

In this chapter we study the Chow ring of an abelian variety. For a nonsingular variety over a
field the classes of cycles modulo rational equivalence form a ring with respect to the intersection
product of cycles. For an abelian variety the Chow ring carries a second product, called the
Pontryagin or convolution product. Here the product cycle is obtained, loosely speaking, by
adding the points on the two cycles. These two aspects of the Chow ring are related by duality.
The transition is provided by the Fourier transform, a transformation from the Chow ring of
an abelian variety to the Chow ring of the dual abelian variety, under which the intersection
product on the abelian variety corresponds to the convolution product on the dual. This Fourier
transform is a wonderful tool for investigating the structure of the Chow ring of an abelian
variety X. Using the Fourier transform one can decompose the diagonal correspondence in
X x X as a sum of orthogonal idempotents. In the motivic language this gives a decomposition
of the Chow motive of an abelian variety as R(X) = @?iORi(X ), analogous to the decomposition
H*(X) = @2, H(X) in cohomology. We close the chapter with a theorem of Kiinnemann which
says that R(X) = A*RY(X).

Along the way we need some properties of the Chern classes of the Hodge bundle. These
properties, like the so-called Key Formula and the vanishing of the top Chern class are of
independent interest and are proved in section 2.

§1. The Chow ring.

We review some properties of the Chow ring and correspondences. An excellent reference book
is Fulton [1]. Note that we are mainly interested in intersection theory on non-singular varieties,
hence we do not need the theory developed in Fulton’s book in its full strength.

(13.1) Let X be a variety over a field k. The group Z,(X) of r-cycles on X is defined as the
free abelian group on the r-dimensional closed subvarieties of X. We usually write [V] € Z,.(X)
for the element corresponding to a subvariety V' C X. Thus, an r-cycle on X is a finite formal
sum Yy mn; - [V;] where the V; C X are closed subvarieties of dimension r and n; € Z. For
r = dim(X) — 1 an r-cycle is the same as a Weil divisor.

In general, Z,.(X) is a very big group. We arrive at a much more manageable group by
taking the quotient modulo rational equivalence. This is done as follows. (Further details and
proofs of some properties can be found in Fulton [1], Chap. 1.)

Let W be an (r + 1)-dimensional subvariety of X. Let V' C W be a subvariety of codimen-
sion 1. The local ring Ow,y of W along V is a 1-dimensional local domain with fraction field
k(W), the field of rational functions on W. (Note: V corresponds to a single point z € |W/|,
and Ow,y is just the stalk Oy, of Ow at x.) For 0 # a € Oyw,y, define the order of vanishing
of a along V to be the integer

ordy (a) := lengthy,, (OW,V/(a)> .

FourChow, 8 februari, 2012 (635)
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We can extend this to a homomorphism ordy: k(W)* — Z by writing f € k(W)* as f = a/b
with a, b € Oyw,y; then let ordy (f) := ordy(a) — ordy (b). Note that if V' is not contained in
the singular locus of W then Oy is a discrete valuation ring, and ordy is just the valuation
homomorphism.

Given f € k(W)*, there are only finitely many codimension 1 subvarieties V' C W such
that ordy (f) # 0. This allows us to define an r-cycle on X, called the divisor of f on W C X,
by

div(f) =) ordy(f)-[V],
%

where the sum runs over the subvarieties V- C W of codimension 1.

An r-cycle a € Z,.(X) is said to be rationally equivalent to zero, notation « ~ 0 or v ~y4 0,
if there exist (r+1)-dimensional subvarieties W1, ..., W, of X and rational functions f; € k(W;)*
such that o = >"7" | div(f;). The cycles rationally equivalent to zero form a subgroup Rat, (X)
of Z,(X) and one defines the Chow group of r-cycles to be the factor group

CH,(X) := Z,(X)/Rat,(X).

We set CH"(X) := CHgim(x)—r(X); this is called the Chow group of codimension r cycles.
Let

CH*(X) := @,CH"(X), and  CHj(X):= CH"(X)®zQ.

It is a fundamental fact that for X a non-singular variety, there exists an intersection pairing
CH"(X) x CH*(X) - CH"™(X), (a,B)—a-p

which makes CH*(X) into a commutative graded ring with identity. This ring is called the
Chow ring of X. The identity element is 1y = [X] € CH°(X). (If X is singular, there is still a
good intersection theory, but this may not give a ring structure on CH*(X). See Fulton [1].)

(13.2) Let f: X — Y be a morphism of k-varieties. Then we have a pull-back homomorphism
f*: CH*(Y) — CH*(X). If f is flat then f* is given by f*[V] = [f~}(V)]. The definition in the
general case requires a little more care; we refer to Fulton [1], Chap. 8 for details. If X and Y
are non-singular then f* is a homomorphism of graded rings.

Now assume that f is proper. Let V be a closed subvariety of X. Then W = f(V) is
a closed subvariety of Y. If dim(W) = dim(V), let deg(V/W) be the degree of the function
field extension [k(V) : k(W)] defined by f; if dim(W) < dim(V) let deg(V/W) := 0. We set
f«[V] = deg(V/W)-[W]. By extending this linearly, we get a homomorphism f,: Z.(X) — Z.(Y)
which induces a homomorphism f,: CH,.(X) — CH,(Y).

For a proper morphism f: X — Y we have the projection formula

(&) =n- f& for all ¢ € CH*(X) and n € CH*(Y").

Furthermore, if

X 2 X
f’l lf
y' oy
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is a Cartesian square with h flat and f proper (“flat base change of a proper morphism”), then
g is flat and f’ is proper, and for all « € CH*(X) we have

(g a=h"f.o (1)

(13.3) Let X be a variety. Let K°(X) be the Grothendieck group of vector bundles on X.
Then K°(X) has a natural structure of a commutative ring, with product [E1]-[Es] = [E1 ® Es].
Let Ko(X) be the Grothendieck group of coherent sheaves on X. Then Ky(X) has a natural
structure of a K°(X)-module, by [E] - [F] = [E®oy F]. If f: X — Y is a morphism of varieties
then we have a natural ring homomorphism f*: K°(Y) — K°(X). If f is proper then we have
a homomorphism f.: Ko(X) — Ko(Y) given by f.[F] = Zi>0(—1)i [R'f.F].

Now assume X is non-singular. The natural homomorphism K°(X) — Ky(X), sending
a vector bundle to the corresponding Ox-module, is in this case an isomorphism. If there is
no risk of confusion we simply write K (X) for K°(X). Just as for the Chow ring, we have
pull-backs f* for arbitrary morphisms f between non-singular varieties, and push-forwards f,
for proper morphisms. We write Kq(X) := K(X) ®z Q.

There is a ring homomorphism

ch: K(X) — CH;(X),

called the Chern character. For a line bundle L with associated divisor class ¢ = ¢;(L) €
CH(%Q(X), it is given by
1
3!
(Note that e only involves a finite sum, as CH(X) = 0 for i > dim(X).) For further details
about the definition of the Chern character, see Fulton [1], sections 3.2 and 15.1.

Still assuming that X is non-singular, the homomorphism Kg(X) — CHg(X) induced by
the Chern character is an isomorphism. See Fulton [1], Example 15.2.16.

1
[L]r—>e£::1+f+§£2+ B

If f: X — Y is a morphism between non-singular varieties then the Chern character com-
mutes with f*, in the sense that f*(ch(a)) = ch(f*(a)) for all « € K(Y). But if f is proper
then “ch” does not, in general, commute with f,. The difference between f,och and cho f, is
made precise by the Grothendieck-Riemann-Roch theorem; see Fulton [1], Thm. 15.2.

(13.4) Let X and Y be non-singular varieties. Elements in CHg(X x Y') are called correspon-
dences from X to Y. For a correspondence { € CHp(X x Y) the transpose correspondence t¢
from Y to X is defined as *¢ := s,(£), where s: X XY — Y x X is the morphism reversing the
factors.

Assume Y is complete. If Z is a third non-singular variety then we can compose correspon-
dences: Given ¢ € CHgp(X x Y) and ¢ € CHg(Y x Z) we define their composition, which is a
correspondence from X to Z, by

Yo =pxz.(Pxy (@) pyz () € CHy(X x Z).

Here px 7 denotes the projection X x Y x Z — X x Z, and similarly for the other projections.
We have (1o p) = bpotah.

If f: X — Y is a morphism with graph map ~v;: X — X x Y, then the correspondence
Iy = [y7(X)] in CHR(X x Y) is called the graph correspondence of f. Note that I'y = 7y, [X].
Iff: X—=Yandg:Y — Zthen I'yol'y =Ty;.
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Assume X is complete. A correspondence I' from X to Y gives rise to a homomorphism of
groups v: CH*(X) — CH*(Y)) by

Y(a) = py(Pi (@) - T), (2)

where px and py are the projections from X x Y to X and Y, respectively. If I' = Iy for some
morphism f then v = f,. (Note that f is automatically proper, as we have assumed that X is
complete.) If I' = *T'y then v = f*. If ' = I"oI'” then for the associated homomorphisms we
have v = ~"o~".

We have a similar construction with Chow rings replaced by K-groups. So, if X is complete
then an element I" € K(X x Y') gives rise to a homomorphism vx: K(X) — K(Y') by the same
formula as in (2). Further we write yop: CH*(X) — CH*(Y) for the homomorphism associated
to the correspondence ch(I") from X to Y.

(13.5) We shall need a variant of the above relative to a given base variety. For this, let k be a
field and let S be a smooth quasi-projective k-scheme. Consider the category ¥/(S) of smooth
projective S-schemes. Note that if X — S and Y — S are in #/(S) then so is the fibre product
X xgY — S. Note further that if X — S is in #/(5) then X itself is again a smooth quasi-
projective k-scheme. In particular this implies that X is geometrically regular. If X = I1.X; is
the decomposition of X as a union of its connected components then the X; are k-varieties in
the sense of Fulton [1] (but not in our sense, as they may not be geometrically irreducible) and
we set CH*(X) := @CH"(X;).

Let X and Y be two smooth projective S-schemes. Elements in CHg(X x5 Y') are called
relative correspondences between X and Y. As before we can compose correspondences.

We shall make repeated use of the following lemma.

(13.6) Lemma. Suppose given morphisms f: X — Y and ¢: Y — Z in ¥(S) and classes
a € CHp(X xsY) and 8 € CHy(Y xg Z). Then we have the identities of correspondences

[Cgloa = (idx x g)«(a),  and  Bo[l'g] = (f x idz)"(B).
Similarly, if f':' Y — X and ¢': Z — Y are also morphisms in ¥ (S) then

[Tglea=(idx xg)"(e),  and  Bo[Tp]=(f xidz).(8).

Proof. The first identities are proven as in Fulton [1], Prop. 16.1.1(c); the last two follow by
transposition. O

The Grothendieck-Riemann-Roch theorem has a variant for correspondences. As usual we
write Td(F) for the Todd class of a vector bundle E; see Fulton [1], Example 3.2.4.

(13.7) Proposition. (GRR) Let X andY bein ¥ (S), with X — S proper. ForT' € K(XxgY)
with associated homomorphisms vk and ycy, we have

ch(yK(a)) = Dy« [p} (ch(a)) - ch(T") - Td(p}TX/S)] .
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Proof. This follows from the usual GRR theorem (see Fulton [1], 15.2.8) applied to the morphism
py: X XY — Y and the element p% (a)-I' of K(X xgY). One gets

ch[py,«(pX(a) -T)] = py[ch(pk (@) -T) - Td(Tx xy,y)] -

Now use the definition of yx (), the fact that ch is a ring homomorphism, and that Tx xy/y =
pxTxys- O
For an abelian scheme 7 : X — S the cotangent bundle Q% /S is a pull-back from a bundle

E of rank g from the base S as it is trivial on the fibres. This is the Hodge bundle which we will
consider more thoroughly in the next section.

(13.8) Corollary. With S as in (13.5), let & X — S and n: Y — S be abelian schemes
over S. Let E be the Hodge bundle of X/S. Let I be an element of K(X xgY') with associated
homomorphisms g and ycu. Then for o € CHg(X) we have

ch(vx (@) = ycn(ch(e)) - n*TA(EY) .

In particular, if S = Spec(k) then the diagram

K(X) <5 CHy(X)

e | [ e

K(Y) 2 CHy(Y)

is commutative.

Proof. We have Tx;s = &*EY, so pxTx;s = pyn*EY. The corollary now follows from (13.7)
using the projection formula. O

§2. The Hodge bundle.

In this section we consider the Hodge bundle of an abelian scheme and prove several basic
properties of its Chern classes.

(13.9) Definition. Let S be a quasi-projective non-singular variety over a field k. Let m: X — §
be an abelian scheme over S of relative dimension g and with zero section s. The Hodge bundle
E =Ex of X is the vector bundle (locally free sheaf) ., (Q% / g) of rank g on S. By Ef we mean
the Hodge bundle of the dual abelian scheme X*. For i = 1,...,g we denote by \; € CH*(S)
the i-th Chern class of E and by A! the i-th Chern class of E’.

Alternatively, the Hodge bundle E may be defined as E = s*wy,s and we can view it as
the cotangent bundle to the zero section s. It satisfies 7*(E) = QF /s- Note that we have

(E)Y = Lie(X") = R'7,Ox.

(13.9) Lemma. We have det(E) = det(E'), i.e. A\t = A;.
Proof. Note that RIm,.Ox = NYR'm,.Ox, and by Grothendieck duality (see [1], Thm. ?? or ?7)
we have RIT,Ox = ROW*(Q_@(/S)V, i.e., we get det(E) = det(E?). O
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If X carries a separable polarization then the corresponding map X — X! induces an
isomorphism E = E!. (Is there always an isomorphism??)

The Grothendieck-Riemann-Roch theorem allows us to obtain relations in the Chow ring
of the base space. We apply this to an ample line bundle on an abelian variety.

(13.10) Theorem. Let S be a smooth quasi-projective scheme over k and m : X — S be an
abelian scheme over S with zero section s. Furthermore, let L be a symmetric line bundle on
X/S such that s*L is trivial and giving a polarization on each fibre. If © is the divisor class in
CH%}(X) representing L then we have the identity
o
Q7

k=0

@g+k
(g +k)!

1 in CHY(S),

where d = deg(©7/g!).

Proof. The idea is to apply the Grothendieck-Riemann-Roch theorem to L. Actually, before
doing that we first replace X by Y = X* g by ¢’ = 4g and L by M = L®* (in shorthand using
the exterior tensor product, i.e., M = piL ® p5L ® p5L ® p;L). Then by the Zarhin Trick there
exists for any n € Z>1 an isogeny of oz Y — Y over S such that o* (M) = M®". Moreover, if H
is the kernel of « (a finite flat group scheme of rank n*9 over S) then we claim that det(Op) is
a trivial Og-module. To see this, note that « is given by an integral 4 x 4 matrix corresponding
to a quaternion z = a + bi + ¢j + dk. Since z lies in a quadratic subfield of the quaternions, the
kernel of « is a direct sum of an even number of copies of group schemes X [m] for divisors m of
n. Now X[m] is self-dual, hence the square of the determinant of Ox{y, is trivial. This implies
that det(Og) is trivial, cf. [Faltings-Chai, p. 257]

Now we take an integer n prime to the degree of L. Then we have a direct sum decomposition
K(M®") > K(M)®Y [n] and a similar decomposition G(M®™) = G(M)&Y [n]. Theorem (8.14)
tells us that we can lift H to a level subgroup (again denoted by H) of G(M®™) (the theory
works over base schemes as well). Let H¢ be the commutator of H in G(M®™) so that H¢/H
is isomorphic to G(M) by (8.16). By the representation theory of the theta group we find

G(M® “)

T (M) 2 Ind 7. (M).

Restrict the representation to the inverse image of Y[n| in G(M®™). Then it decomposes as
7« (M) tensor a representation of G(M®™) induced from a rank 1 representation of H¢ with the
property that its n-th power extends to a representation of G(M®™). If we ignore elements of
finite order (and we do because we work in CHg(.S)) then we may conclude that the determinant
of this representation is equal to det(Op ), hence trivial. We thus get

ch(m, (M®™)) = n? ch(m (M))  in CH(S). (1)
The Grothendieck-Riemann-Roch theorem applied to 7 : Y — S and M says

ch(mM®") = m,(ch(M®") - Td(Qy/g)
= my(ch(M®") - Td(n" (Ey)))
— 7. (ch(M®")) - TA(EY)
by the projection formula. Here Ey is the Hodge bundle of Y/S. Since Rim, (M) = 0 for i > 0
it follows that m (M) = 7, (M) is a vector bundle.
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The relation (1) now gives writing e"®" for ch(M®"):

o ’ "4k ) /+k
nd +k@/g + , Q9
X ———— | Td(EY,) = nY 7, ———— | Td(EY)).
" (; (9" +k)! (Ey) =nom kzzo(g’—i-k:)! (Ey)
Comparing coefficients of n" and using that Td(Ey) = 1+ ... gives the result immediately for

Y, M and ©’. It is easy to derive it then for X, L and O. .

(13.10) Corollary. With L as in the Theorem we have ch(m (L)) = d Td(EY).
By comparing codimension 1 classes in the Grothendieck-Riemann-Roch formula applied
to m and L as in 13.10
ch(mL) = 7,(e®)Td(EY = d Td(EY) (2)

and using Td; (EY) = —)\;/2 we find the following Corollary.
(13.11) Corollary. (Key Formula) For L as in the theorem we have the formula in CH}@(S )

c1(mL) = —rank(m, (L)) A1 /2.

By Zarhin’s trick we know that for any abelian variety X /S the abelian variety Y = (X xg
X*)* carries a principal polarization L. This implies that mL lives in degree 0 and is given by

a line bundle 7, (L), so
ch(m. (L)) = e EV)/2,

On the other hand, equation (2) implies ch(m, (L)) = Td(Ey). By comparing these we get the
following corollary.

(13.12) Corollary. Let X/S be an abelian scheme over a smooth quasi-projective basis S.
Then if A\; = ¢;(E) we have in CHg(S) the relation
TAEY)TA((EH)Y) = e~ M.

If X carries a separable polarization then we have Td(EY) = e=*1/2,

Proof. Note that Td(Ey) = TA(EV)*Td((E")V)* and A\ (Ey) = 4X\; + 4\, = 8\; by (10.9).
If X/S carries a separable polarization then we get a separable isogeny X — X! inducing an
isomorphism between E and E?. O

As a consequence of the basic relation deduced in 13.10 we get the following fundamental
relation for the Chern classes of the Hodge bundle.
(13.13) Theorem. If X/S carries a separable polarization then we have in CHg(S) the relation

T4+X+X+. 20 =M +...+ (1)) =1 (3)

Proof. The relation Td(EY) = e~*1/2 implies that Td(E @ EV) = 1. This again implies that if
aq,...,a4 are the Chern roots of E then

g

H eaiai_ 1 - He—ai/27

=1 1=1
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equivalently, that
g

g
H(eai/Q _ e—ai/Q) — Hai
i=1

i=1
and this implies that the even degree power sums of the «; vanish. This is easily see to be
equivalent to ch(E @ EY) = 2g or to the relation (3). O

Another important result on the Hodge bundle deals with the top Chern class A, of E in
the rational Chow group CH{(S).

(13.14) Theorem. Let m: X — S be an abelian scheme of relative dimension g over the
smooth quasi-projective scheme S. Then the top Chern class A\, € CHé(S) of the Hodge bundle
E vanishes.

Proof. We apply the Grothendieck-Riemann-Roch theorem to the structure sheaf Ox and the
morphism 7 : X — S. It says

ch(m(Ox)) = 7. (ch(Ox ) TA((©) )5))) = 7. (1) TA(EY),
since Qﬁ(/s = 7*(E). We know the cohomology of Ox:
m(Ox)=1—-EY +A’EY — ...+ (=1)Y NYEY.
We thus get the identity
ch(1 —EY + A’EY — ...+ (1) AYEY) = 7, (1) Td(EY) = 0.

A general relation, due to Borel and Serre 1, p. 128 says that for a vector bundle B of rank r

one has
s

S (~1)7ch(ABY) = ¢p(B) Td(B) L.
j=0

So we see Ay Td(EY) = 0. Since Td is invertible the result follows. O

§3. The Fourier transform of an abelian variety.

(13.15) Definition. Let S be a quasi-projective non-singular variety over a field k. Let X be
an abelian scheme over S with multiplication map m: X xg X — X. The Pontryagin product,
or convolution product

«: CH"(X) x CH*(X) — CH*(X)
(relative to S) is the map defined by

ax 3 =m.(pla-p3f).

Intuitively, the product a * (3 is obtained by adding the points on cycles representing «
and 8. Note that the Pontryagin product depends on the base variety S, though this is not
indicated in the notation.

(13.16) Lemma. Let g = dim(X/S). The Pontryagin product makes CH*(X) = @;CH"(X)
into a commutative ring for which the cycle [e(S)] € CHY(X) given by the identity section
e(S) C X is the identity element.
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The proof of this fact is straightforward and is left to the reader.

(13.17) Lemma. Let f: X — Y be a homomorphism of abelian schemes over S. Then we have

felaxB) = fu(a) * fu(B) for all a, f € CH*(X).

Proof. Denote the projections of X xg X (resp. Y xgY, resp. Y xg X) on the two factors by p;
(resp. q;, resp. r;), i = 1,2. Since fomyx = myo(f X f) =my-o(idy x f)o(f x idx), we have

filaxB) = fimx .(pia - p3p)
= my(idy x f).(f xidx).(pie - p3p)
=my(idy x f).(f x idX)*(p’{a (f x idX)*ré‘B)
=my,.(idy x f).((f x idx).pie-730),

where in the last step we use the projection formula. Applying (1) to the Cartesian diagram

indX
_—

X X9 X Y Xg X
X 7, Y

gives that

(f xidx)wpia =rifea = (qie(idy x f))" fea = (idy x f)*q] facr.
Again using the projection formula, this gives fi(a * 8) = my,. (¢} fear- (idx x f).r33). Finally
we apply (1) to the Cartesian diagram

idy x f
—

Y xg X Y xg X
- -
x L. v
This gives the desired conclusion that f.(« * ) = my (¢} fra - ¢5 f+8) = freax f.5. g

We now come to the main notion of this chapter.

(13.18) Definition. Situation as in (13.15). Let £ = ¢1(Px) € CH' (X xg X*) be the class
of the Poincaré bundle of X. We define the Fourier transform T of X as the correspondence
from X to X! given by

1
T=ch(P)=exp(l) =1+(+ §£2+--- € CHy(X xg X").
We write
Tkt K(X) — K(X')  and 7 =7cn: CHY(X) — CHH(XY)

for the homomorphisms associated to the element [#] € K (X xg X*), as explained in (13.4).
Concretely,

Tr () = pxt (P - pk ) for x € K(X);
Teu(z) = pXt7*(€e pxx) =pxt (T - pk) for z € CH@(X).
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(13.19) Proposition. Let X/S be an abelian scheme of relative dimension g. Let £': X' — S
with zero section e': S — X' be the dual abelian scheme. Then we have

Tou(1x) = (1) - ei(1s)
in CHj(XY).
Proof. Let E and E! be the Hodge bundles of X/S and X*/S, respectively. By (13.8) we have

ch(7x[Ox]) = ren(1x) - €¥* TA(EY). (3)

On the other hand we can calculate 7x(1x) = 7k [Ox] directly. Namely,

S (1) [Ripx:. )
(
(

Tk[Ox] = px++ (2 - px[Ox]) = px+ +(P)

—1)9 - el (det(E")™)
—1)7 - e (Os) - £ det(E*) 71,

according to our calculation of the cohomology of the Poincaré bundle &?. Now we apply GRR
to the morphism e: S — X*. This gives

ch(e!(0g)) - Td(Tx+) = €L (Td(Ts)) ,
hence
ch(tx[Ox]) = (=1)9 - et (Td(Ts)) - Td(Tx:) ™" - "*ch(det(E")) .

We have an exact sequence 0 — EH*EHY — T — £9*Tg — 0. This gives the relation
Td(Tx:) = EH*TA(EDY) - €5*Td(Ts). Since eb* o£H* = id we get, using the projection formula,
! (TA(Ts)) - Td(Tx) ™! = et (TA(E) 1) = el (1) - £ Ta(E) .

In total this gives

ch(TK[Ox]) = (—=1)9-el(1g) - &8* [Td(ﬂit’v)_1 ~ch(det(Et))_1] . (4)

Let A\ = ¢1(E) and A} = ¢;(E'). As shown in 13.12 we have Td(EY)Td((E")Y) =
exp(—A1/2 — At /2) and as we remarked in the beginning of section 2 we have A\; = \}. Com-
parison of the two expressions (3) and (4) gives the desired identity. O

Let T be the Fourier transform of X?. It is associated to the Poincaré bundle on X? x X*t.
If we apply the isomorphism xx: X — X' then T* can be identified with the transpose of the
correspondence T'.

(13.20) Proposition. Let f: X — Y be a homomorphism of abelian schemes over S. Then
Tyo[Ly] = [Tp]eTx in CH(X xg Y?). If f is an isogeny then we further have the relation
Txo[trf] = [Fft]OTY in CH&(Y Xg Xt)

Proof. Lemma (13.6) gives Ty o[['f] = (f x idy+)*ch(ZPy) and ['T'st]oTx = (idx x f*)*ch(Zx).
So for the first assertion we have to show that

(f x idy+)"ch(Py) = (idx x f*)*ch(Px). (5)
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But the dual f* of f is defined by the identity (idx x f)*(Px) = (f x idy+)*(Py). Applying
the Chern character we get (5).
In a similar way, again using (13.6), the second assertion is equivalent to

(f xidxt)sch(Px) = (idy x f').ch(Py). (6)

We use the Cartesian diagram

. t
X xgyt XXy xt
indytl lfxidxt
. t
Y xgyt Ty xt

This gives the identity

(ldy X ft)*(f X idxt)*ch(gz_x) = (f X ldyt)*(ldX X ft)*Ch(gx)

= (f xidy+)«(f x idy+)*ch(Py) by (5)
= deg(f)ch(Py).
Applying (idy x f!), to both sides gives deg(f*)(f X idx:)«ch(Px) = deg(f)(idy x f?).ch(Py),
and if f is an isogeny then (6) follows because deg(f!) = deg(f) # 0. O

(13.21) Theorem. Let m: X xg X — X and m': X! xg X* — X' be the group laws of X
and X!, respectively, let A: X — X xg X and A!: Xt — Xt x5 X! be the diagonal morphisms,
and let T®T denote the Fourier transform of X X ¢ X. Then we have identities of correspondences
TeT = (—1)9 - ['T_jqy] in CHg(X x5 X);
To[lp]) =[Ta]e(T®T) in CHH(X xsX xgX');
To['Tal = (=1)7 [[p]o(T®T) in CHH(X xsX xgX").

Proof. For the second identity one applies the previous proposition to the homomorphism m.
(Use Exercise 7.1.)
Next remark that, by definition, the correspondence T¢-T on X xg X is

t
P13« (Pae’ - Pise’ ) = prs . (exp(piyl + p3slh)) .

Let p: X xg Xt xg X — X xg X! be the homomorphism given on points by (a,b,c) — (a+c,b)
and let s: X xg X* — X! x5 X be the map reversing the factors. Let &2 be the Poincaré bundle
on X xg X" In Pic(xx4xtxsx)/s We have the identity

P12(2) + p338™ (P) = p*(2), (7)

as follows from the Theorem of the Cube by checking that the two sides have the same restrictions
to X xg X' xe(S), to X xe(S)x X and to e(S) x X! x X. So we find that T*-T = py3. (et ) =
P13 (p*e’). From the Cartesian diagram

XXthXsX L> XXth

i | |»

m

X xg X LN X
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we get TtoT = m*p;.(e’) = m*t&y(1x¢). Application of Prop. (13.19) then gives TtoT =
(—1)9m*e.(1s). But by the Cartesian square

(idx,—idx)
_—

X X xX
| m
Spec(k) —%—— X

we get m*e,(ls) = I'_iq, . This proves the first identity.
For the third identity, start from the relation

T*o[Cpe] = [Talo(T"®T"),

which is the second identity for X*. Multiply by T from the left, by (T'®T) from the right, and
use the first identity (both for X* and for X xg X). This gives

(—=1)7 - [Toiay Jo[Coe]e (T @ T) = T [ Talo[T—iax ]
= To['T_iay]o[Tal.
Now observe that To[*T'_iq,] = [T _ia,.]°T, because both equal exp(—¢). Since ['T'_jq,,] =

[F_idxt] is a unit in the ring of correspondences from X! to itself, this proves the third iden-
tity. ]

(13.22) Corollary. Situation as in (13.15). Let g = dim(X/S).
(i) We have t¢yetcn = (—1)9(—idx)*. For all z, y € CH(X) we have the relations

Ten(z *y) = ou(z) - 7eu(y) and Ten(w - y) = (=1)?7cn(®) * Ton(y).
(ii) For a homomorphism f: X — Y we have 1y o f, = fU*orx. If f is an isogeny then also

7_X°f>k :fafOTY-

Proof. These relations follow directly from Prop. (13.20) and Thm. (13.21). For example, for ii)
note that T'»[I';,] induces a map CHy(X x s X) — CHg(X") with pfa- p38 — mm.(pia-ps3) =
7(a * 3). On the other hand, since Pxx,x = pjPx ® p5Px we have

Txxsx (p1a - p3B) = pxixsxt(Pi(a- Px)p3(8 - Px))
= pi"(T(a) - py'(7(3))

with p} the projections of X' x ¢ X* onto its factors. Now ['T'a¢] induces (A*)* so that [T at]oT'®
T induces a map sending pi(«) - p5(3) to 7(«a) - 7(5). O

As another corollary we obtain the following elegant result.

(13.23) Theorem. The Fourier transform of X induces an isomorphism of rings
7 =7om: (CH{(X), %) — (CHy(X"), ),

where - and * denote the intersection product and the convolution product, respectively.

This theorem should justify the name Fourier transform. Just like the Fourier transform
for functions on the real line which transform the convolution product into the usual product
our Fourier transform interchanges the Pontryagin product, which one can see as a sort of
convolution product, with the usual intersection product.
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84. Decomposition of the diagonal.

(13.24) For any reasonable cohomology theory with a Kiinneth formula, Poincaré duality and
a cycle class map we have for an abelian variety X of dimension g
2 29 29— . 2g . . 2g .
HY(X x, X)= & HY '(X)®, H(X)= & H'(X)" ®, H(X) = & End.(H" (X)) .
i=0 i=0 i=0
The diagonal class cl(Ax) € H*9(X x}, X) corresponds to the element ®idy:(x). Hence we can
write
c(Ax) =7+ +-+ 72,

with v; € Endg (H WX )) The classes 7; are called the Kiinneth components of the diagonal.
Standard conjectures, as discussed for instance in Kleiman [1], predict that these classes are
algebraic. That is, there should exist codimension g cycles D; on X xj X such that [Ax] =
Do+ Dy + -+ Dyg and cl(D;) = v;. The main result of this section establishes the existence
of such algebraic classes.

Throughout this section, let S be a smooth connected quasi-projective scheme of dimen-
sion d over a field k. We consider an abelian scheme f: X — S of relative dimension g. Recall
that if { € CH(X xs X) then we define its transpose '¢ € CH (X x5 X) by *¢ := 5.(€), where
s: X xg X — X xg X is the automorphism switching the two factors.

If x € X(S) is a section of f, we define the graph class [I';] of x by

[Ty] :=z.[S] = [z(5)] € CHY(X).
In particular, [T'c] is the identity element of CHg(X) for the Pontryagin product.
Further, let i, 1= zx 1x¢: Sxg X' — X x g X*, and consider the pull-back i%(¢) € CH(X?)
of the class of the Poincaré bundle. The following two formulas, due to Beauville, give relations

between ¥ (¢) and the graph classes [I'y].

(13.25) Lemma. For all x € X(S) we have

g+d |
T([Fw]) = exp(if) and (i 0) 1)9+1 Z B [Fe])*j ‘

Proof. We have 7([T;]) = pxt,(px@.[S] - €°) = pxr,iz. ([X] - ite’) =€ ¢, This proves the first
relation. Further, in CHg(X") we have the identity

1
i;leog(l—(l—eiT Z—l—eT

Note that for dimension reasons a term of the form (1 — exp(iif))j vanishes for j > dim X* =
g + d. By our first identity and Cor. (13.22) we have

(1 — ™)) = T%T(([Fe] — [rm])’”) = (-1)9(=1)/([T,] — [T]) ™,
and combining this with the previous formula this gives the second relation. O
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(13.26) Lemma. For z, y € X(S) we have [I'y] * [['y] = [['z44].

Proof. By the Theorem of the Square, i3, ¢ = 3¢ + i ¢. This implies that (0] * [Ty]) =

(L)) ([0y]) = elaleint = elaltiyt = 7([C44y]). Now apply Thm. (13.23). O

These formulas can be used to deduce a vanishing property. Let I(X/S) be the Q-subspace
of CHg(X) generated by the elements [I';] — ] for all z € X(S5). By Lemma (13.26), I(X/S)
is a subring of CH%(X ) with respect to the ring structure defined by the Pontryagin product.

(13.27) Proposition. Let d = dim(S) and g = dim(X/S). Then I(X/S)*(9+d+1) =0,

Proof. The Fourier transform of a product

([le] - [Fe]) * ([sz] - [Fe]) Kook ([an] - [Fe])

equals (exp(i; ¢£)—1)-(exp(i} £)—1)--- (exp(i; ¢)—1), and for dimension reasons this expression
vanishes if n > dim(X*) = g + d. By Thm. (13.23) the result follows. O

In view of Lemma (13.25) we now put
log([Fx]) = (—1)9‘”'1 . Tt(z;f) .
This is a well-defined element of I(X/S5).

(13.28) Corollary. The map X (S) — I(X/S) given by x + log ([I';]) is a group homomor-
phism.

Proof. This follows from the identity of formal power series log((1+ z)(1 4+ y)) = log(1 + z) +
log(1 +v). O

(13.29) Theorem. (Deninger, Murre) There is a unique decomposition of the class of the
diagonal in CHg(X x5 X),

[Ax/s] = Zm‘ (8)

such that fi
0 ifi#j,
ﬂ-iOﬂ-j_{'/TZ‘ lf’L:J’
and such that
[Ty ]om = n'm for alln € Z. 9)

Moreover,
(i) mio['Thy] = nim; for all n € Z;
(ii) ‘m = T2g—i;
(iii) if f: X — Y is a homomorphism then ['T'flom; y = m; x o ['T'f].
Proof. First we prove unicity. Suppose {7} is another collection of elements satisfying (8)
and (9). Then Zfi on'(m; — ) = 0 for every integer n; hence m; = 7. for every i.
Let us consider X xXg X as an abelian scheme over X via p;: X xg X — X. We also
consider the convolution product on CHg(X xg X) relative to the base scheme X. If n € Z
then the morphism X — X xg X given by x — (x,nz) is a section of X xg X over X; its
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graph class is none other than the class [’y ] € CHg(X x5 X) of the graph of nx. If there is
no risk of confusion we simply write [I',] for this class. In particular, [I'iq] = [I'1] = [A] and
L] = [To] = [X x e(S)]. (Here the “¢” in I'. has to be interpreted as the identity section of
X xg X over X.)

For i < 2g, define 7; € CHg(X x5 X) by

_
(2g —9)!

T i —

og(ria) "™ = ot (0 S (el - ) )

j=1

Note that m; = 0 for i < —d and T2, = [X X e(9)]. By the identity exp(log(1 + z)) = 1+ z of
formal power series we have

=Ml = > m. (10)
i=—d

By Lemmas (13.6) and (13.17) we have [I';]o(ax3) = ([['z]o) * ('] ). Combining this
with (13.26) and (13.28) we get

[D]em = ﬁ log([I,]) 7~
mlog([F- ]*n)*(zg_i) (11)
= Gy lor( o)) Y = 2o,
So we have [[,] = [[n]eA = [[]e 57 m = S22 029 im;; hence n?9 I, = [[,]em; =

Zgg —d n?9~'m;om;. As this holds for every integer n, it follows that

{0 if i # 7,
7TZ‘07T]‘: ep o .

m; if i =j.

From the relation [[',] = Y n?9~I71; we get that m;[I',] = n?9~'r;. Furthermore, we have
[Co]o['T,] = n?9A, and so n?97ir;o['T,] = m;io[[pn]e['Ty] = n?9m. We find that [[',]o'm; =
!(m;o['Ty]) = n' - *m;. Now remark that the relations (10) and (11) uniquely determine the
collection {m;}—the argument is the same as for the unicity with respect to the relations (8)
and (9). But what we have shown means that the collection of elements {*mo,_;} satisfies (10)
and (11) too, and (ii) follows. This also implies that m; = 0 for i < 0, so (10) reduces to (8).
Further, (9) and (i) follow by transposition from the relations that we have already proven.

To prove (iil) we let ¢;; = 7 x o[*T'f]om; y. Then

n'ci; =mjx o[ Tylon'my
= mjx o[ Tsle[Tnlomy
=TjXx° [trn] ° [trf] oY = njcij )

which implies that ¢;; = 0 unless 7 = j. Hence

[tff] 07I'l'7y = [Ax] o [trf] oﬂ_i,Y
= Ci;

=mix o[ Tfle[Ay] =m x['Ty].
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This completes the proof of the theorem. O

(13.30) Example. As remarked in the proof, we have my, = [X X e(S)]. Combining this
with (i) gives that my = [e(S) x X].

Next consider an elliptic curve E over a field k. By formula (8) and the previous remark,
we should have

m = [Ag] — [{0} x E] — [E x {0}] .
On the other hand, we have defined m; € CHg(E xj E) to be

tog([Tial) = (1] ~ [ {0}]) — 5 - (1A] - [ x {0}]) .

where the Pontryagin is computed on E X E, viewed as an abelian scheme over F via the first
projection. Using Lemma (13.26) we find

Lo,

m=2-[Ag] 2 [Bx {0)] -

where I's C E X F is the graph of multiplication by 2. To see that the two ansers for m; agree
we should check that

[T2] + [Ex{0}] —2-[Ag] —2-[{0} x E] =0 (12)

in CH%)(E X E). This is indeed the case, for if E is given by a Weierstrass equation f(X,Y) =10
for some cubic f(X,Y) € k[X,Y] then

s xQ — Top
PQ) = GFax)(P) - (vg —2r) + (0707 )(P) - (vg — 97 (13)

is a rational function on E x E whose divisor is precisely the left hand side of (12). (Note that
the restriction of the LHS of (12) to {P} x E equals [2P] + [0] — 2[P]. This is the divisor of the
rational function I/l where [; is the linear form that defines the line through 2P and 0, and
where l5 is the linear form that defines the tangent space at P. Working this out in coordinates,
l; and Iy give precisely the numerator and denominator in (13).)

(13.31) The interpretation of Thm. (13.29) is that the motive of X decomposes as a direct sum
of 2¢g submotives—this point of view shall be further discussed in § 4 below. Let us now already
make the connection with cohomology theory. For this, consider any Weil cohomology X ~—
H*(X), defined for varieties over a ground field k, with coefficients in a field L of characteristic 0.
In particular, we have a Kiinneth formula, Poincaré duality, and a cycle class map cl: CHZ@(X ) —
H*(X) mapping CHg(X) into H*'(X).

Let g = dim(X). By the Kiinneth decomposition and Poincaré duality we have

2 29 r2g—i i 29 rify\V i 29 i
H?(X x3, X) = .@OH I X))@ H'(X) = @OH (X)Y @ H(X) = 'GBOEndL(H (X)) -
1= = 1=
The diagonal class cl(Ax) € H?9(X xj X) corresponds to the element ®id Hi(x)- Hence we can
write

cd(Ax) =+ + -+ 72,
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with v; € Endg (H WX )) The classes 7; are called the Kiinneth components of the diagonal.
Standard conjectures, as discussed for instance in Kleiman [1], predict that these classes are
algebraic. That is, there should exist codimension g cycles D; on X x; X such that [Ax] =
Do+ D1+ -+ Dyy and cl(D;) = ;. For abelian varieties, this is exactly what Theorem (13.29)
achieves, as we shall now prove.

(13.32) Corollary. Let k be a field, and let X — H®(X) be any Weil cohomology for k-
varieties, with coefficients in a field of characteristic 0. Then for any abelian variety X the
Kiinneth components of the diagonal are algebraic; more precisely, the classes 7; in (8) satisfy
cl(m;) = 7;. Further we have H*(X) = A*H'(X), and nx induces multiplication by n* on H*(X).

Proof. Let g := dim(X). We make H®* := H®(X) into a graded bialgebra by taking m* as
co-multiplication and e* as augmentation, cf. (6.14) where we used a similar construction for
the cohomology of the structure sheaf. By the Borel-Hopf Theorem (6.12) we have H® =
H} ®---® H;, with H; generated by a single element z; of degree d; > 0. Note that the
degrees d; are odd. Indeed, if d; were even then z] # 0 for all ¢ > 0, which is absurd; see the
restrictions discussed in (iv) of (6.11), and see Exercise (6.4). It follows that the elements x;,
which are primitive in the sense of (6.16), satisfy x? = 0; see again Exercise (6.4). This means
that H* is a product of exterior algebras; more precisely: if V; C H* is the span of the elements x;
for which d; = j then we have
= @ (V)

as graded bialgebras. In particular, if r; := dim(V}) then
H? = (N"'V1) @ (A3 V3) @ -+ ® (A" Vay_q), (14)
and by comparison of the degrees this gives the relation
29=r1+3rg+5r5 4+ + (29 — 1)rog_1 . (15)

We are going to show that r; = 0 for j > 1.

We have cl(Ax) = Z?io cl(m;), and the elements cl(m;) € Endy(H®) are projectors. Let
us provisionally write H*{i} for the image of cl(m;). It follows from (9) that H*{i} C H® is
precisely the subspace on which nx induces multiplication by n’.

Suppose h € H® is a primitive element in the sense of (6.16). As 2x equals the composition
moA: X — X x; X — X, we find that 2% (h) = A*m*(h) = A*(h®1+1® h) = 2h. Hence for
every n which is a power of 2 we have n% (h) = nh, and this suffices to conclude that h € H*{1}.
But the elements of V := Vi @ V3@ - -- @ Voe_ are all primitive; hence V- C H*{1}. This implies
that

(A"V1) @ (A™2V3) @+ (A9 Vg 1) C H'{s} with s=1r1i 475+ -+ 721

On the other hand, we know that nx acts as multiplication by n?9 on H?9, as H?9 is spanned by
the cohomology class of a point. So it follows from (14) that s = 2¢g, and comparison with (15)
gives that 71 = 2g and r; = 0 for j > 1. Hence H* = A"H' with H' = V; C H*{1}, so nx
induces multiplication by n' on H®. This last property also implies that cl(m;) = ;. O

(13.33) Let X be an abelian variety over a field k. We now study the effect of nx on CH@(X).
The elements m; of (13.29) give rise to a collection of orthogonal idempotents in Endg (CH?Q(X ))
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Accordingly, we can decompose CH@(X ) as a direct sum of subspaces. To make this more precise,
let us define N
CHg' (X) := {a € CHy | nk(a) =n*Ja forall n}.

It follows from (9) that CHf@j (X) is precisely the subspace of CHZQ(X ) that is cut out by the
idempotent mo;_;.
For example, for i = 1 we have CH'(X) = Pic(X). We know that

Pic’(X) = {[L] € Pic(X) | n*[L] = [L®"] for all n},
and we may also consider the symmetric line bundles
Pic™™(X) := {[L] € Pic(X) | L is symmetric}
= {[L] € Pic(X) | n*[L] = [L&"] for all n},

where the last equality follows from Cor. (2.12). After tensoring with Q we can invert 2 and we
have a direct sum decomposition

CHy(X) = (Pic’(X) ® Q) & (Pic™ (X) @ Q)
= CHg'(X) & CHg(X).

(Cf. the comments after Cor. (2.12).) It is this decomposition that we shall now generalize.

(13.34) Lemma. Let z € CH(X), and write Tcu(z) = §_0& with &; € CH?@(Xt). Then
£ € CHEI ™ (XY).

Proof. Recall that we write ¢ € CH}@(X x X*t) for the class of the Poincaré bundle. We have
(id x n)*¢ = n - £, and, by definition, Tcn(z) = px+«(pk (z) - exp(¢)). Hence

¢ (@)

’ g =i+ )
0

p9—+J (n - g)g—i—l-j oy
n*(&) = t*idxn*<*m-%>: t*(*x-%):ng_zﬂ',
(&) = pxe.( )" (Px (@) it TP px(z) G— 77 &

which is what we want. n
(13.35) Proposition. For a € CH(i@(X) and n € Z\ {—1,0, 1}, the following are equivalent:

(i) a € CHZ (X);
(i) n*(a) =n?Jq;
(iii) n.(a) = n2972itiq;
(iv) ren(a) € CHE ™ (XY);
(v) Tem(a) € CHI"H7(X1).
Proof. That (i) implies (ii) is just the definition of CHéij . For the implication (ii) = (iii) we
use that n,n* is multiplication by n* on CHg(X). To see that (iii) implies (iv) we use (ii) of
Cor. (13.22), which gives
n*7(a) = T(n.a) = n?9"2r(a). (16)
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Since |n| > 1 this implies, by the preceding lemma, that 7(«) € CHé_Hj (X*"). The implication
(iv) = (v) is again the preceding lemma.

We now have shown that (i) implies (v). Next assume that (v) holds, and apply (i) = (v)
to the class 7cu () on the dual abelian variety. We get that 7¢7(a) € CH"Y(X). By Cor. (13.22)
this means that (—1)*a € CHf@j(X), which implies that o = (—=1)*(—1)*a € CHf@j (X). O

(13.36) Corollary. The Fourier transform gives a bijection

Ten: CHy (X) = CHE (X1

(13.37) Theorem. We have

CHG(X) = j:e?_g CHg (X).

If ¢ € CH (X) and n € CH®(X) then & -n € CH™™% and ¢ xn € CHy "9+,

Proof. It follows from (13.36) that CHg’ (X) vanishes if j > i or j < i — g, since then g — i + j

lies outside the range [0, g]. It is clear that & - 7 lies in CH*™"%5 and the last assertion follows
from this using Thm. (13.23) and Cor. (13.36). O

§5. Motivic decomposition.

(13.38) We now give a brief introduction to Chow motives. For more explanation we refer to
Manin [1], Scholl [?7], ...

Let S be a smooth quasi-projective scheme over a field k. For simplicity we shall assume
S to be connected. The category .#(S) of relative Chow motives has as its objects pairs
(f: X — S,p) with f a smooth morphism, and with p € CHg(X x g X) an idempotent (meaning
that pop = p). If there is no risk of confusion we use the shorter notation (X, p). The morphisms
are given by

Hom 4 (5) (X, p), (Y, q)) = {geaep | @ € CH{(X x5 Y)},

and composition of morphisms is given by composition of correspondences.

The set of morphisms Hom%(s)((X, p), (Y, q)) carries a natural grading: if X = II; X; is
the decomposition of X into connected components, with X; of relative dimension d(X;/S)
over S then we set

Homi((X,p), (Y,q)) :={qeaep | o€ GBjCHé(Xj/S)H(Xj xgY)}.

Composition of morphisms respects this grading: if & € Hom" and § € Hom? then aof €
Hom'™7.

The category .#9(S) of effective Chow motives is a variant of .#(S). The objects are pairs
(X,p) in #(S), but we require p to be of degree 0 and morphisms are also of degree 0; in other
words, Hom 40 (g) = Homg/,(s). There is a natural contravariant functor R: #(S) — .#9(S)

sending X/S to (X,[Ax/s]), and sending a morphism f: X — Y over S to [*Ty].
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In .#9(S) we have direct sums, given by taking disjoint unions; so,
(X;p)@ (Yiq) = (X1Y,pllq).

For instance, if p € CHg(X) is a projector then so is ¢ := [Ax/g] — p, and we have R(X) =
(X.p) & (X, q).

Since we want to keep track of “Tate twists”, we introduce a third category, denoted
by #°(S). Its objects are triples (X,p,m) with (X,p) in #?(S) and m € Z an integer.
The morphisms are given by

Hom///O(S) ((X7p7 ’I?’L), (}/7 q, n)) = Homﬁf;(wsl) ((X’ p)7 (Ya Q)) .
We view .9 (S) as a full subcategory of .#°(S) by sending (X, p) to (X,p,0).

(13.40) The category .#°(S) is an additive Q-linear category in which every projector has a
kernel and a cokernel. Such a category is called pseudo-abelian. We have a tensor product,
given by

(X,p,m) @ (Y,q,n) = (X xgY,pXgq,m+n).

The object 1g := (S, [S], 0) is an identity for the tensor product. As an immediate consequence
of the definitions we have the Kiinneth formula

R(X xsY)=R(X)®R(Y).

An object M = (X,p,m) has a dual MY in .#°(S). Namely, if X is of pure relative
dimension n over S then we set M := (X, *p,n —m); to extend this to the general case we first
decompose X into connected components. We have a canonical isomorphism

Hom(A ® B,C) = Hom(A, BY @ C),

functorial in A, B and C in .#Z°(S). (In the terminology of tensor categories, as in Deligne and
Milne [1], this makes .#%(S) into a rigid tensor category.)
We define Tate twisting in .#Z%(S) by

(X,p,m)(n) =(X,p,m+mn).

In particular, for X/S of relative dimension n we have the relation

which may be thought of as the motivic analogue of Poincaré duality. (Note, however, that in
the present context this relation is a tautology.)

(13.41) As an example of a Chow motive we have the Lefschetz motive Lg. Take the projective
line over S, take a section e: S — P, and consider the projector [Ic] := [P§ xg e(5)] €
CH@(]P’}; x g PL), which is independent of the choice of e. Then we define

IL’S = (]P)}SW [Fe]v 0) .

One can check that R(PL) = 1g @ Lg. This is reminiscent of the splitting P! = {oo} II A, and
indeed we can think of Lg as a “motivic form” of the affine line.
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For M € .#°(S) we have the relation M (—1) & M ®L; see Exercise (13.3). It easily follows
from this that for all n € Z we have

M(n) = M L%, (17)

where for n = —v < 0 we define L®" to be (LV)®V.

Using the Lefschetz motive we can say how to form direct sums in .#°(S). On the full
subcategory .#{(S) the direct sum is as described in (13.39). We extend this to the whole
of .#°(S) by using the relation (17). Thus, given M = (X,p,m) and N = (Y, ¢,n), choose
r > max(m,n), and use that M = M'(r) and N = N'(r) with M’ = (X/S,p,0) @ L® =™ and
N'(Y/S,q,0) ® L"=". Then M’ and N’ are in .#(S) and (M’ & N')(r) is a direct sum of M
and N.

(13.42) A multiplicative structure on a relative motive M in .Z(S) is a morphism M @ M — M
in #(S). A morphism ¢: M — N in .Z(S) is compatible with multiplicative structures on M
and N if it fits in a commutative diagram

MoM 222, NoN

! !

M 25 N

For example, the relative motive R(X/S) carries a canonical multiplicative structure coming
from the diagonal embedding A: X — X xg X via

R(X/S) @ R(X/S) = R(X x5 X/5) L1221 R(x/9) .

Another example is given by an abelian scheme A/S. The multiplication m: A xg A — A
induces the convolution multiplicative structure

R(A/S) @5 R(A/S) 7L R(A/S).

The relations obtained in Thm. (13.21) may now be reformulated by saying that the Fourier
transform 7 yields an isomorphism R(A4/S) — R(A!/S), compatible with the canonical multi-
plicative structure on R(A/S) and the convolution structure on R(A*/S). The inverse isomor-
phism is given by (—1)9['T'_jq, ] T".

(13.43) We shall need the exterior powers A°’M of a motive M = (X,p,m) in .#°(S). Recall
that for cycles we have an exterior product: if £ € CHgp(X) and n € CHg(Y) then we have a
well-defined cycle class £ x n € CHg(X xgY).

Let S; be the symmetric group on 7 letters, acting on X* = X Xg --- Xxg X by permuting
the factors. Define s; € CH (X" xg X*) by

§; 1= % Z [°T,],

o€eS;

and let

Simi=8ic(px - Xp)=(pX---Xp)osie(pX---Xp)=(pX---XDp)oS;.
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We now define
AN'M = (X", 85,0, mi) .

Note that s; s € CH(B(Xi X g X*) can be viewed both as a morphism A°’M — M®? and as a
morphism M®? — APM.

We say that M has finite dimension if there exists an integer d such that A’M = 0 for all
i > d. For a finite-dimensional M we put

ANM = &% o N M.

The exterior algebra A*M carries a canonical multiplicative structure induced by the composite
maps
SH_]‘O(SZ' X Sj)i ANM Qg N M — M®FT 5 NI

(13.44) Remark. In order to get some feeling for these notions, it helps to think about reali-
sations of motives. For instance, suppose S = Spec(k) and suppose we have a Weil cohomology
X — H*(X) for k-varieties, with coefficients in some field L. Then this gives a (covariant!)
functor h from .#°(k) into the category of finite dimensional, augmented, graded-commutative
L-algebras, referred to as a realisation functor. Via this functor we recognize several notions
defined above as being “motivic analogues” of familiar notions in cohomology. For instance,
the canonical multiplicative structure on R(X) may be thought of as the motivic analogue of
cup-product.

There is a subtle point in this last remark, though. If we have two motives M; = (X1, p1, m1)
and My = (X2, pa, ma) then there is an obvious isomorphism

P My @ My = My ® My,

obtained from the isomorphism X x Xo — X5 x X that reverses the two factors. However, with
this identification the multiplicative structure on an exterior algebra A*M is commutative rather
than graded-commutative. Also, the canonical multiplicative structure on R(X) is commutative,
unlike cup-product, which is graded-commutative. Though this does not make any difference
for the results discussed in this section, let us point out that, in a suitable sense, the above
isomorphism 1) is not the right identification to use. A modified version of 1) would give a theory
in which A*M and R(X) are graded-commutative, as it should be. However, to define the right
identification M7 ® My = My ® M; we need the algebraicity of the Kiinneth components of the
diagonal, which, as already mentioned, is not known in general. See 77 for further discussion.

(13.45) Let X/S be an abelian scheme of relative dimension g. Define
RY(X) = (X,m;,0),

with 7; as in (8). Then Theorem (13.29) yields a canonical decomposition

such that [*T,] acts on R*(X) by n’. Poincaré duality tells us that R?9~"(X)" = R'(X)(g).
Our goal is to prove a theorem of Kiinnemann, which asserts that R‘(X) is isomorphic to
A'RY(X). As a preparation we first give another description of the motive A’R!(X). Since we
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shall need the projectors m; for various abelian schemes, we shall from now on often write m; x
for the elements obtained in (8).

By definition we have A'RY(X) = (Xi7 Sio (T x X -+ X T x), O). By the motivic Kiinneth
formula we have

7ri7X7L: E 7rn1,X><"'X7Tni,X>
ni+-+n;=i

where the indices n; run from 0 to 2g, satisfying the condition on their sum. To filter out the
term m; y X --- X m x we use the action of —idx. Note that for [X] € CH%(X) we have

5 [X] — (—idx)*[X] = 0. (18)
Therefore, for a = (a1, ...,a;) € {£1}*, let sgn(a) := ajas---a; € {1} and define

A= (1/2) ) sen(a)['T,] € CHE (X' xg X'),
ae{£1}

where of course I', denotes the graph of the automorphism (ay, ..., a;) of X¢. Now observe that

AioT; xi = )\i"( E Ty, X X o0t X 7Tn7;,X)
n1+ =i

19
:)\i°(7T1,X><"'><7T1,X) ( )
=Ty,x X oo XT,X -
Indeed, if n; > 1 for some index j then there is also an index [ € {1,...,7} with n; = 0; but

then it easily follows from (18) that the term A;o (7, x X -+ X 7y, x) vanishes. We are left with
the term corresponding to (ny,...,n;) = (1,...,1), which is preserved because each [‘T,] acts
on it as the identity.

(13.46) Lemma. We have A'R'(X) = (X, \;os;0m; xi,0) in 4°(S).

Proof. One easily checks that the elements s; and A; are projectors and that they commute.
Now (19) gives

/\ZRI(X) = (Xi,SiO(T('LX X ... X 7T17X),0) = (Xi,SiO)\iOWLXi,O) = (Xi,AioSioﬂ'Z"Xi7O),
which is what we want. g

(13.47) Theorem. (Kiinnemann) There is an isomorphism of motives with multiplicative
structures

A RY(X) 5 R(X).

Proof. Let ¥ X* — X and A% X — X° be the homomorphisms given by X¢(z1,...,2;) =
x1+ -+ +z; and Al(x) = (z,...,2). We have the relations

[tFAi] °08; = [tFAi] and S;0° [trzi] = [trzi] . (20)

Let us also note that we have the relations m; xios; = s;om; xi and m; xioA; = Ajom; xi, as
follows from (iii) of Thm. (13.29).
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Define morphisms
®; == [Tasle(Niesiom; xi) = [TailoXiom; xi € Hom go(g) (AR (X), R(X)) ,

and
1 t 1 t ipl
U, = a(Aiosiom,Xi)o[ Isi] = aAiom,Xio[ I'si] € Hom 405y (R(X), N'R (X)) .
The theorem will result from the following more precise claims:
(i) D0V, = T3, X
(11) ‘1/1'0(1%' = AiOSiOWLXi = id/\iRl(X).

To prove (i) we write

@io\lfi = (1/2') . [tFAi]O)\Z‘OTFi,Xi 0)\Z'O7Ti7Xi°[tF2i]

= (1/i!) - ['Tas]o Xio[Tsi]om; x by (iii) of (13.29)
= (1/2'1) - > sgn(a)[Tsicqoad]om,x
ac{£1}¢
= (1/2) 3 sgn(@)[ Tayrota]oTix
ac{£1}¢
= (1/24!) - Z sgn(a)(ay + - +a;)" - T x by (9).
ac{£1}i

Now use that
0 if 0 <k <1,

2l if k=4,

Z sgn(a)(ar + -+ +a;)" = {
ac{£1}®
as is easily shown by induction on 3.

To prove (ii) we must show that (1/i!) - Xjem; xio['Txi]e['TailoXjom; xi = Ajosiom; xi.
What we shall actually prove is that

(1/d1) - sio* Ao [Dasoxi]otm; xio® Ay = "Njols;otm; xi . (21)

After transposition, using (20) and using that s;, A; and m; x: are mutually commuting projec-
tors, this gives the desired relation.

Write pr;: X¢ — X for the projection on the [th factor and j;: X — X? for the inclusion of
the lth factor.

As before, we view X’ xg X' as an abelian scheme over X’ via the first projection. We
know that *m; xi = mag;_; xi, and by construction the latter equals (1/4!) - log([Fid])*l. (This
takes place on X"*.) Recall that when we write “I'jq” we may interpret this as the graph class
associated to the section € — (£, &) of X* x5 X over X*. Likewise, we have meaningfully defined
graph classes [I'j, opr,]-

With these remarks, the LHS of (21) equals

(1/i)% - Ps;0 N [T aiosi]o log([Tia]) ™ o "N

= (1/i1)% - Ts;0" \j0 log([FAioEi])*iot)\i using Exercise (13.4)
i *1
= (1/il)? - tsiowo(z 1og([rjk0prl])) oA
k=1
i i
= (1/2'!)2 . t8i°t>\i° ( ]og([rjkl °Prll]) ¥ oe- % log([iji Oprli])> Ot)\i .
ktpooki=111,...,1;=1
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‘ourChow:sigtau o€S; TES;

Indeed, expanding \; we have

Ao (log([Tjkl Oprzl]) ok lOg([iji Opr’z‘])> **Ai

— 9 %, ji: sgn(a)sgn(b)-log([raojklopnlobD koo *log([ra°1ki°Pﬁi°b])' (23)
a,be{+1}?

If (a1,...,a;) is not a permutation of (1,...,7), choose j € {1,...,i} \ {n1,...,n;}; then the
corresponding terms with a; = —1 and a; = 1 cancel out. Likewise, if there is an index j in
{1,...,4} \ {b1,...,b;} then the terms with b; = —1 and b; = 1 cancel out. Hence we may
assume that (ki,....k;) = (0(1),...,0(i)) and (I1,...,L) = (7(1),...,7(i)). If for a € {1}
we group the 2' terms of (23) with ay(;) - br;y = ; for all i then we find that (23) equals

27t Z sgn(a) - (log([FaoijomT(l)]) Kook 1og([Faoj6(i)0prT(i)]))
ac{£1}i
= tAio (log([rja(l) °PTT<1)]) KoK log([rja(i) OPTT(i)])> )

proving our claim.
Next we remark that we may reorder the log-factors in (22), and since *s; > log([T';, ,, opr,]) =
log([T'j, opr,]) for all o and I, we finally get that the LHS of (21) equals

(1/4!) jobs;o (Z log Jo(1) 0pr1]) Kook log([rja(i) °Pr7:])>

o€S;
= P50 \jo (log([Fjl opr,]) % ook IOg([Fjwpri])) . (24)

The RHS of (21) equals

(1/i1) - Azt log([Tia]) ™ |
= (1/i1) - Nie i (1og ([T, ope]) -+ log([Tyepe)) )

%

= (1/4!) -tsiot)\io< Z log([lﬂjn1 omnl]) Kook log([aniomni])) .

ni,...,n;=1

With the same argument as above we see that the only non-trivial contributions come from the

terms with (nq,...,n;) a permutation of (1,...,7). Hence we get
(1/2 ( Z log Jo(1) °Prg(1)]) X log([rjo'(i) OPT(y(i)])) ’
ocES;

and after reordering the log-factors we see that this equals (24), proving relation (ii).

To finish the proof of the theorem we have to check that the maps , ®;: A*RY(X) — R(X)
and ), U;: R(X) — A*R!Y(X) respect the multiplicative structures. This is a straightforward
verification that we leave as an exercise. U
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(13.48) Remark. Passing to cohomology this gives another proof of Thm. (13.32).

Exercises.

(13.1) Let X be an abelian variety. Write 7 = 7cn. If a € CHg(X) is a symmetric element,
meaning that (—1x)*« = «, prove that 7(«) is symmetric too, and that 7(a) € @; CH%_iﬂj (X).
Similarly, if « is anti-symmetric, meaning that (—1x)*a = —a, prove that 7(«) is also anti-
symmetric, and that 7(«) € @jCHé_szH(X).

(13.2) Let © be a divisor on an abelian variety X giving a principal polarization. Let 6 €
CH@(X) be its class. Prove that 7(e?) = e~?.

(13.3) Consider the category .#°(S) as in (13.39). Let L = (P, [[¢],0) be the Lefschetz motive
as defined in (13.41).
(i) Let g := [A]—[[¢], with A C P{ x g% the diagonal. Show that (P}/S,¢,0) = 1. Conlude
that R(PL/S) = 15 & L.
(ii) For M in .#°(S) and L, prove that M(—1) =2 M ® L.

(13.4) Let f: X — Y be a homomorphism of abelian schemes over a basis S as in (13.38).
For z € X(S), view log([I';]) as a correspondence from S to X. Show that [I's]o log ([, )
log([T f(x)]). Using Lemmas (13.6) and (13.17), generalize this to the identity [I's] log([I']) "
log([Ff(x)])*n for all n > 0.

Notes. Pontryagin introduced the Pontryagin product in his investigations of the homology of Lie groups in
1935; see Pontryagin [1], [2]. The Fourier transform can be defined in various contexts. It first occurred in a paper
of Lieberman (see Kleiman [1], Appendix) at the level of cohomology. Mukai introduced it in the derived category
of Ox-modules and established many properties of it. Beauville studied the Fourier transform on the Chow rings
of an abelian variety and especially the action of multiplication by n. Deninger and Murre [1] used work of
Beauville to give a canonical decomposition of the Chow motive of an abelian variety which is the analogue of the
well-known cohomological decomposition H(X) &2 @?iOHi (X). It is based on the decomposition of CH(E (X x X)
into eigenspaces of the endomorphism (1x X nx)* for any integer n. If [n| > 1 then the components of the
diagonal for this decomposition yield pairwise orthogonal idempotents in the ring of correspondences and this
gives a decomposition of the Chow motive of an abelian variety. Shermenev had given such a decomposition
earlier, but his decomposition was not canonical. Kiinneman used these idempotents to prove that the Chow
motive R(X) is the exterior algebra Al R!' generalizing the result for cohomology. Proposition (13.27) is due to
Bloch; the proof using the Fourier transform stems from Beauville.

Inventarisatie van wat we nodig hebben in dit hoofdstuk:
— & Xt — S dan RIEE P > el det(EY)™
— resultaten over Chern klassen van de Hodge bundel; i.h.b. dat Td(E) = exp(A1/2) en dat
A= Ag;
— Thm of the Cube voor abelse schema’s;
— Thm of the Square voor abelse schema’s.
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Chapter XIV. Jacobian Varieties.

In this chapter we study a class of abelian varieties that are : Jacobian varieties of curves. In
fact, every abelian variety is isogenous to a quotient of a Jacobian variety. The definition of the
Jacobian J = JacO(C) of a curve C' was already given in Chapter 6: it is the identity component
of Picgyy. If the curve has genus g then J is birationally equivalent to the g-fold symmetric
product of C; this allows for a detailed study of the Jacobian.

The Jacobian comes equipped with a principal polarization given by the theta divisor © C
Jac?™1(C) of effective divisor classes of degree g — 1. The geometry of this divisor reflects the
properties of the curve in a spectacular way. The Torelli theorem says that the Jacobian with its
polarization determines the curve. But not every abelian variety is a Jacobian. The Matsusaka
Criterion often helps us to decide whether it is or not.

Unless indicated otherwise, by a curve over a field k we shall mean a 1-dimensional variety
over k. In particular, a curve is supposed to be geometrically irreducible and reduced. In § 9
we shall consider more general curves, that are not assumed to be irreducible.

§1. The Jacobian variety of a curve.

(14.1) We recall from Chapter 6 the definition of the Jacobian variety of a curve. Let k be a field
and let C'/k be a proper smooth curve of genus g. We started with the functor Pe/y: Sch%€ — Ab
given by T — Pic(Cr) = H'(Cr,0f,). We cannot expect that this functor is representable;
to repair this we have to sheafify it. The relative Picard functor Picc y: Sch?k — Ab is defined
as the fppf sheaf associated to the presheaf Po/,. By standard results, see (6.3) and (6.8), this
functor is representable by a smooth group scheme over k£ whose connected components are
complete. We shall be most interested in the identity component

J = JC/k = PiCOC/k,

which is a g-dimensional abelian variety over k with H'(C, O¢) as its tangent space at the origin.

If C has a k-rational point e: Spec(k) — C' then Picg;, can be identified with the functor
of line bundles with rigidification along €. In this case we find that Picg/y is isomorphic with
the functor Sch%€ — Ab given by T +— Pic(Cr)/phPic(T), where pp: Cp — T is the projection.
In general, not assuming that C' has a k-rational point, there is an exact sequence

0 — Pic(T') — Pic(Cr) — Picg(T) — Br(T) — Br(Cr), (1)

where Br(X) denotes the Brauer group of a scheme X; see 7?. The boundary map Picc(T) —
Br(T') can be non-zero, which means that not every class in Picg /4, (T') can be represented by a
line bundle on Cr. See Example (14.3) for a simple concrete example.

For a line bundle L on Cp the function dy.: |T'| — Z given by t — deg(L;) is locally constant.
This is a consequence of the fact that the Euler-Poincaré characteristic x (L) is locally constant
(see HAG, Chap. 3, (9.9)), as we have the Riemann-Roch relation x(L;) = deg(L;) +1 — g.
Hence dj, can be viewed as a T-valued point of the constant group scheme Z. As we have

Jac, 8 februari, 2012 (635)
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drom = dp + dyr, the map L — dp defines a homomorphism of presheaves d: Pg/, — Z. Now
define
deg: PiCC/k — 7

to be the associated homomorphism of group schemes, bearing in mind that Picc/y is the fppf
sheaf associated to Pg/,. Of course, if a T-valued point of Piccy is represented by a line
bundle L on Cr then deg([L]) is just the function dy.
We now define, for n € Z,
Jac™(C) := deg™(n).

(One could also call this Picg /i but in the context of Jacobians of curves we shall rather use
Jac™(C).) Note that Jac"(C') is a non-empty scheme, as it is clear that it has k-valued points.

Since deg is locally constant, J C Jac’(C). We assert that, in fact, Jac’(C) is connected,
and hence J = Jac®(C). To see this, we may extend scalars to an algebraic closure of k. Then
every class in Jac’(C) is represented by a line bundle O¢ (D) with D a divisor of degree 0, i.e.,
D is of the form >, (P, — Q;) with P, Q; € C(k). Now remark that for fixed Q € C(k) the
map C — Jac®(C) given on points by P — [P — Q] has a connected image.

The following result summarizes our conclusions thus far.

(14.2) Theorem. Let C be a proper smooth curve of genus g over a field k. Then J = Jcyj, 1=
Picoc /i 1s an abelian variety of dimension g whose tangent space at the origin is isomorphic
with H'(C,O¢), and which coincides with Jac(C), the kernel of the degree homomorphism
deg: Picc/, — Z.

The resulting variety J = Picg Ik = Jac®(C) is called the Jacobian variety or simply the
Jacobian of C. The functor Jac™ (C) is represented by an algebraic variety of dimension g over k
which is a torsor under J. In particular, each Jac"(C) is again connected and complete. By
construction we have Picc/, = [],,c Jac™ (C).

As we shall later, the Jacobian J comes equipped with a natural principal polarization
X J =5 J'. Let us note here that in some literature the term “Jacobian” refers to the pair
(J,\), or to J together with a theta divisor © C J. In this book, the term “Jacobian” refers to
the abelian variety J itself.

(14.3) Example. If C has genus 0 then the degree map gives an isomorphism Picg/y, =7z
and all components Jac"(C) are isomorphic to Spec(k). This does not mean that for any n
there exists a line bundle of degree n on C'! For example, take k¥ = R and consider the curve
C C P? given by X2 +Y? + Z2 = (. This curve only has line bundles of even degree. However,
Cc @ PL, so given n € Z there is, up to isomorphism, a unique line bundle L,, of degree n on Cc.
Hence the Galois group Gal(C/R) fixes the class [L,] € Pic(C¢), and therefore L,, defines an
R-valued (and not just C-valued) point of Jac"(C'). Taking T' = Spec(C), the sequence (1) in
this example reads
0—0—2Z—Z—7/2Z —0.

Of course, in genus 0 the Jacobian is not a very interesting object. Some more interesting
examples shall be discussed in § 5 of this chapter. In what follows we shall usually only consider
curves of genus g > 1.

By (3.15) we have
Q}ac”(C)/k = HO(Cv QlC’/k) Ok OJaC"(C) 5
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where we use the identification Ty, = H Y(C,0¢)Y of Cor. (6.6), part (i), and the Serre duality
isomorphism H'(C,0¢)Y = HO(C, Qlc/k) In particular this gives an isomorphism

HO(Jac™(C), Qaen i) = H(C. Qi) (2)

(14.4) Theorem. Let
j: C — Jact(0)

be the morphism that associates to a T-valued point P of C' the class of the line bundle O¢,.(P)
on Cr.
(i) If g > 1 then j is a closed immersion.
(ii) The induced map j*: H°(Jac'(C),Q
morphism (2).

§3C1(0)/k) — HO(C, QlC/k) coincides with the iso-

Proof. Without loss of generality we may assume that k = k. Since j is a morphism of smooth
k-varieties, it is a closed embedding if it separates points and tangent vectors. To see that j
separates points, suppose that @1, Q2 € C(k) have the same image under j. Then O¢(Q1) ®
Oc(Q2)™! =2 Oc(Q1 — Q) is trivial, i.e., Q1 — Q2 is the divisor of a function f. But then f
defines an isomorphism of C' with P!, contradicting the assumption that g(C) > 1.

Next we want to compute the tangent map of j. Let @Q € C(k). Choose a local coordinate ¢
at @, i.e., an element of k(C) that vanishes to order 1 at ). Let U; be an affine open neigh-
bourhood of @ in C such that ¢ has no zeroes or poles on U; \ {Q}. Set Uy = C'\ {Q} and let
Uiz := Uy NUs. Then the class of the line bundle O¢(Q) in Pic(C) = H'(C,O¢) is represented
by the Cech 1-cocycle t~1 € O (Ui2) with respect to the covering C' = Uy U Us.

Let 0; € T, be the tangent vector at () given by the local coordinate ¢. We claim that
the tangent map

Tj: To,g — TJacl(C),j(Q) = Hl(Ca Oc) = HO(C7 QlC/k)v

is given as follows: If w € H°(C, Qg ), write w locally near Q as w = f(t)dt; then Tj(0) (w) =
7).

For the proof of this claim, write Cle] := C ®y, kle] and U,fe] := U; @y, kle], where kle]
is the ring of dual numbers. We can describe the tangent vector J; as a k[e]-valued point
Q: Spec (k[e]) — Uile] € C[e] that reduces to @ modulo e. If we let A := O¢(Uy) then Q is given
on rings by a homomorphism Q: Ale] — k[e] of the form Q(a+be) = Q(a)+e- (6(a)+Q(b)), where
0: A — k is a k-derivation. We find that the tangent vector “Q = 0;” is the one corresponding
to the unique k-derivation d: A — k with 8(t) = 1, and that # := t —e is a local coordinate for Q.
The class of the line bundle O¢| (Q) is then represented by the Cech 1-cocycle 1 € OE[E] (U12).
Hence the class of the line bundle OC[E](Q - Q) in H! (C [€],1 + e0¢) is given by the cocycle
ttt=1+t"tee O¢ g (Ur2), and therefore corresponds to the class in H'(C,O¢) represented
by the cocycle t=1 € O¢(Uis).

The isomorphism H'(C,0¢) — H°(C, Qlc/k)v can be described in terms of residues of
differentials; cf. HAG, Chap. III, Sect. 7. In the particular case considered here we find that
T5(8;)(w) equals the residue at @ of the differential ™' - w € Qlc/k(Um). If we write w locally
near @ as w = f(t)dt then resq(t~! - w) = f(Q), and this proves our claim.

To complete the proof of (i), observe that the canonical system |K¢| of C' is base-point free,
as g > 1. This just means that there is an w € H°(C, Qlc /k) that does not vanish at ). Hence
Tj(0:) # 0, and since T¢ ¢ is 1-dimensional, the tangent map at every point is injective.
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The assertion in (ii) is essentially a reformulation of the claim that we have proved. To
see this, take w € H°(C, Qlc/k), and let a be the global 1-form on Jac'(C) corresponding to w
under the isomorphism (2). Suppose we have a line bundle L of degree 1 on C, and a line
bundle L on Cle] that reduces to L modulo e. Write L[] for the pull-back of L under the
natural morphism Cle] — C. Then L ® L[e]~! is a line bundle on C|e] that is trivial modulo ¢,
and therefore represents a class in H!(C, O¢). On the other hand, we can view L as a k-valued
point of Jac*(C) and L as a tangent vector at [L]. Now the relation between o and w is that the
evaluation of o at the tangent vector L equals the evaluation of w € HO(C, Qlc/k) ~ H(C,0¢)V
at the class given by L ® L[e] 1.

Now we compose with j. Let Q € C(k), choose a local coordinate t, and let “Q = 9,” be
the corresponding tangent vector. Then we find that the value of j* at Q equals the evaluation
of w at the class in H'(C, O¢) given by the bundle Oce (Q — Q). But by the computation done
above, if we write w = f(t)dt then the value we find is just f(Q), which is also the evaluation
of w at the tangent vector Q. As this holds for all points Q, this means precisely that jfa=w,
as claimed in (ii). O

(14.5) As Piccyy, is a group scheme, its tangent bundle is globally trivial. To be precise,
using the translations we get a natural identification of the tangent bundle of Picg/, with
Opice), @k Tyo. For Q € C(k) the tangent map Tjq: To,q — Traci(c),j(@) can therefore be
viewed as a map vg: Tc,g — T0. Alternatively, v¢ is the map on tangent spaces induced by
t_j@yej: C — J. By (i) of the theorem ~q is injective. Hence yq(Tc,q) is a line in T, or
equivalently, a point v(Q) € P(Ty,0) (k) In this way we obtain a well-defined morphism

v: C —P(Tyy),

called the Gauss map. As an immediate corollary of the theorem and its proof we find that this
Gauss map is in fact nothing but the canonical map of C.

(14.6) Corollary. The Gauss map C — P(T;o) = P9~! that assigns to a point P the
tangent space to j(C) at j(P) translated to the origin, coincides with the canonical map
o C — P(HO(C,04)").

§2. Comparison with the g-th symmetric power of C.

Let C be a proper smooth curve of genus g over a field k. Let n € Z>,. The n-th symmetric
power of C over k, notation C'("), is defined as

¢ .=Cc"/6,,

the quotient of C'™ under the action of the symmetric group &,, via permutation of the coordi-
nates. (Of course, C™ stands for the n-fold product C' xj --- x C over k.) Note that in (5.16)
we have used a different notation for symmetric powers; this was necessary to avoid confusion
with the pull-back of a scheme in characteristic p via the absolute Frobenius. In this chapter we
shall use the more common notation C'").

For m, n > 0 the natural isomorphism C™ x C™ -~ C™*" induces a morphism 8, C(m) x
Cc( — Cc(m+n) that we shall refer to as the sum map. The terminology comes from the fact,
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explained in more detail below, that C™) is the variety of effective divisors of degree m on C;
with this interpretation the morphism s,, , is the map that sends a pair of effective divisors
(D, E) to their sum D + E. More generally, given non-negative integers my, ..., m, we have a
natural morphism s = s,,, . m,. Cm1) x ... x Olmr) C(M), where M =mq + - +m,.

(14.7) Lemma. Let C be a proper smooth curve over k. Let n € Z>.

(i) Suppose given a partition n = my +---+m, and points P\, ..., P, € C(k) with P; # P;
ifi # j. Write m; P; € C) (k) for the image of the point (P;, ..., P;) € C™ under the quotient
map C™ — C("i) Then the sum morphism s: C("1) x ... x C(™r) — (") js étale at the point
(mlPl, e ,mTPT).

(ii) The n-th symmetric power C"™) is a smooth k-variety.

The “divisor-like” notation for points of the symmetric powers of C' will be further justified
below.

Note that the action of &, on C™ is not free but that, nevertheless, the quotient C™ is
smooth over k. It is essential for this that C is a curve; a similar conclusion does not hold in
general for the symmetric powers of higher-dimensional varieties.

Proof. Part (i) is an easy application of the result in Exercise (4.5)(ii). For the proof of (ii) we
may assume that k is algebraically closed, and by (i) and induction on n we only need to show
that C™ is non-singular at points of the form nP for P € C(k). (Here again nP is the image
of (P,...,P) € C™(k).) By part (i) of Exercise (4.5) the completed local ring of C™) at nP is
isomorphic to the ring of &,,-invariants in OACn,( p,...p)- But OCH,( P,...,p) is isomorphic to the

formal power series ring k[t1,...,t,], with &, acting via permutation of the variables. The
subring of invariants is the formal power series ring k[o1,...,0,] in the elementary symmetric
polynomials o;, and this is a regular ring. O

(14.8) As before, let C/k be a smooth proper curve. If k C k is an algebraic closure then
to give a k-valued point of C(™ is the same as giving an unordered n-tuple of k-valued points
{P1,...,P,}, or, what is the same, an effective divisor P; + --- + P, of degree n. This inter-
pretation of C(™) as the variety parameterising effective divisors of degree n in fact works over
an arbitrary basis. To explain this in detail we need the notion of an effective relative Cartier
divisor. See the first few pages of Katz and Mazur [1] for an excellent introduction. Let us
summarize what we need.

If T is any k-scheme then an effective (relative) Cartier divisor in Cp := C X T over T is
a closed subscheme D C Cr which is flat over T' and such that the ideal sheaf I'p C O¢, is an
invertible O¢,.-module. As C'is proper over k, such a Cartier divisor is proper over 7' too, and
Op is finite locally free as an Op-module. The rank of Op as an Op-module (which is a locally
constant function on 7T') is called the degree of D.

An effective relative Cartier divisor in C7/T can also be described as the isomorphism class
of a pair (L, s), where L is an invertible sheaf on Cr and s € H°(Cr, L) is a global section, such
that the quotient sheaf

L/s5(0¢,) := Coker(O¢, = L)

is flat over T'. Two such pairs (L, s) and (L’,s’) are considered to be isomorphic if there is an
isomorphism of O¢,.-modules h: L — L’ with h(s) = s’. The correspondence is that to a pair
(L, s) we associate the zero scheme D = Z(s) C Cr of the section s; conversely, to D C Cr we
associate the pair (I5',s), where s is the global section of 15" = Hom(Ip,Oc, ) given by the
inclusion I'p — Oc¢,..
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Effective Cartier divisors in C7/T can be added. If D corresponds to the pair (L, s) and D’

to the pair (L', s") then D + D’ is the effective Cartier divisor corresponding to (L ® L', s ® s’).

If D C Cr is an effective Cartier divisor of degree n over T and h: T" — T' is a morphism of

k-schemes then we can pull D back to an effective Cartier divisor D = h*D C Cp of degree n
over T". In this way we obtain a contravariant functor

n . . n effective Cartier divisors

Divccﬁ;’k: Sch), — Sets with Dlvgﬂ;’k (T) = {D C Cy of degree n over T} .

In the case considered here, this functor is the same as the Hilbert functor Hilb¢/, of closed
subschemes of C that are locally free of rank n over the basis. See for instance BLR, Section 8.2
or SGA4, Exp. 77 for further details.

If P e C(T) is a T-valued point of C' then this gives a section " — C7p of the structural
morphism, whose image is an effective Cartier divisor P C Cr of degree 1 over T'. More generally,
for Py,..., P, € C(T) we get an effective Cartier divisor P; 4 - -- + P, of degree n. In this way
we obtain a morphism of functors C" — Divgﬁ/’g . But it is obvious that this morphism is
&, -invariant; hence it factors through a morphism

h: 0™ — Divccﬁ;’:.

(14.9) Proposition. The morphism h is an isomorphism, so ctn = Divecfi’,?.

Proof (sketch). We need a construction to go back from an effective Cartier divisor D C Cr of
degree n over T to a T-valued point of C™. If f: Cp — T is the structural morphism then
f+«Op is an Op-algebra that is locally free of rank n as an Op-module. If z € Op (f_l(U)) for
some open U C T then multiplication by z is an Op(U)-linear endomorphism of Op ( f~Yu ))
which has a determinant detp,r(z) € Op(U). This gives a map of sheaves detp,r: f.Op — O
which is multiplicative and has the property that detp r(c-z) = ¢ -detp 7 (z) for local sections
c of Or and z of f.Op. Writing S"(f.Op) C ®3,.(f«Op) for the sub-Or-algebra of symmetric
tensors, one shows that there is a unique homomorphism of Op-algebras 0: S™(f.Op) — Or
with the property that 9(z ®---®2) = detp,r(z) for all local sections z. (To prove this we may
work locally on T and assume that f.Op is free as an Op-module.) In terms of schemes this
means we have a morphism

: T — DM .= D"/6,, = Spec(Sn(f*OD))

which is a section of the structural morphism D) — T. Composing this with the canonical
morphism D™ — C induced by the inclusion D < C we obtain a T-valued point of C™).
Now one verifies that this gives an inverse of the morphism h. O

(14.10) We shall henceforth identify C™) with Divecﬁ/’; via the above isomorphism .

Earlier we have studied the morphism j: C' — Jac'(C), given on points by P +— O¢(P).
We can generalize this to a morphism j(™: C(™ — Jac™(C), as follows. If Py,..., P, € C(T)
for some k-scheme T then j(Py) + --- + j(P,) is a T-valued point of Jac"(C), and this defines
a morphism C™ — Jac™. As this morphism is clearly invariant under &,,, we get an induced
morphism j™: C(™ — Jac"(C); this is the morphism in which we are interested. In terms
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of Cartier divisors, j(™ sends an effective Cartier divisor D C Cp of degree n over T to the
class in Jac”(C)(T) represented by Oc, (D). Better still, if we describe a Cartier divisor as
the isomorphism class of a pair (L,s), then j) is simply the forgetful map [(L,s)] — [L].
In particular, this last description makes it clear that the k-valued points of the fibre of ;™
over [L] form the projective space P(H(C,L)). This is Abel’s theorem that the fibres of (™
are precisely the linear systems of degree n. In particular, all (non-empty) fibres are projective
spaces. We shall now give the precise details and prove this scheme-theoretically.

(14.11) Abel’s Theorem. Let L be a line bundle of degree n on C. Then the (scheme-
theoretic) fibre of the morphism j™: C™) — Jac™(C) over the point [L] is P(H°(C, L)), the
complete linear system of effective divisors D with Oc(D) = L.

Proof. Write ® ¢ C™ for the scheme-theoretic fibre of j(™ over [L], and let P := P(H®(C,L)).
Let f: T — Spec(k) be a k-scheme and consider the cartesian diagram

cr -+ C

r | E

T L Spec(k)

By definition, P = Proj (Sym. ((p*L)V) ) A T-valued point of P is given by a line bundle M on T
together with a surjective homomorphism ¢: f* ((P* L)v) — M, where two such pairs (M, t) and
(M’,t'") are considered equivalent if there exists an isomorphism a: M —~ M’ with aot = t/;
see EGA II, Prop. 4.2.3. By the projection formula, t = pr .(s) for a unique global section
s € HY(Cr,g*L ® p4%M), and the pair (¢*L ® p4M, s) defines a T-valued point of ®. As this
construction is functorial in 7', it defines a morphism of schemes ¢: P — ® over k. Conversely,
if (L', s) is a T-valued point of ® then L' = ¢*L ® pk M for some line bundle M on T, and the
pair (M ) pTv*(s)) defines a T-valued point of P. This gives an inverse of ¢, which therefore is an
isomorphism. O

(14.12) Corollary. Let C/k be a smooth proper curve of genus g > 1. For 0 < n < g
the morpism j™ is a birational morphism from C™) to its image in Jac™(C). For n > g the

morphism j™) is surjective.

Proof. We may assume that k is algebraically closed. If n > g and [L] € Jac™(C)(k) then it is
immediate from Riemann-Roch that L is effective, so [L] is in the image of j(™).

Now suppose 1 < n < ¢. As the dimensions of the fibres of ™ vary in an upper-
semicontinuous manner, it suffices to show that there exists an effective divisor D of degree n
such that h%(D) = 1. Indeed, if we know this then it follows that there is a non-empty open
U c C™ such that jl(g) is an immersion, which is what we assert. We proceed by induction
on n < g. For n = 1 the assertion is clear, as the assumption that g > 1 implies that h°(P) =1
for any point P € C(k). Suppose then that 2 < n < ¢g and that we have an effective divisor
E of degree n — 1 with h°(E) = 1. Let K be a canonical divisor of C'. Riemann-Roch gives
(K —-E)=g+1-n2>1,s0 K — E is effective. Now choose any point Q € C which is not a
base point of the linear system |K — E|. Then h°(K — E — Q) = h°(K — E) — 1, and again by
Riemann-Roch E + @ has h’(E + Q) = 1. O

(14.13) Definition. Let C' be a complete, non-singular curve of genus g > 1. For an
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integer n with 0 < n < g we define W,, C Jac™(C) to be the image of the morphism j(™: C(™ —
Jac"(C). For n = g — 1 we usually write

0 c Jac! 1(0)

for W,_1; it is called the theta divisor.

Note that W, is a reduced and irreducible closed subscheme of Jac™(C'), as it is the image
of the reduced and irreducible scheme C™ under the proper morphism ;). By construction,
W,, parametrizes the effective line bundles of degree n on C'. Also note that, by the Corollary, ©
is indeed a divisor in Jac?™'(C). We further remark that Wy is the origin of .J, that W; = j(C),
and that W, = Jac?(C).

In the rest of this chapter, whenever we discuss the theta divisor, we assume that our curve
has genus g > 1. Most of the theory works fine in the case g = 0, too, if we define © to be
the empty divisor in Jac?™*(C) 2 Spec(k). But as we have seen in Example (14.3), there is not
much interest in developing the theory of Jacobians for g = 0.

In view of its importance we highlight the case n = g of Corollary (14.12). The dimensions
of C9) and Jac?(C) are equal and ;9 is surjective.

(14.14) Jacobi’s Inversion Theorem. The morphism j9): C9) — Jac!(C) is a bira-
tional equivalence.

So roughly speaking, Jac?(C) is “C'9) with the linear systems contracted”. (Recall that
the only morphisms from a projective space to an abelian variety are the constant maps, cf.
Prop. (1.7).) We shall discuss some examples of low genus in 77 below.

Corollary (14.12) also implies that the cycle classes of the subschemes W,, C Jac™(C) are,
up to a factor, just the Pontryagin powers of the class of the curve. Here we define Pontryagin
products

x: CH(Jac?(C)) x CH(Jac®(C)) — CH(Jac?**(C))

by the usual rule o x 8 = m, (o x 3), where m: Jac?(C) x Jac®(C) — Jac®™¢(C) is the addition
map. The precise result is then as follows.

(14.15) Corollary. Assume C has genus g > 0. Let w,, € CHY™"(Jac™(C)) be the cycle class
of W,, C Jac"(C). Write v = wy, which is the class of the 1-cycle j(C') C Jac'(C). Then for
0 < n < g we have v*" = nlw,. As particular instances of this we have

FOD = (g-1)10, and 4" = g![Jac?(O)],
where § = wy_; € CH'(Jac?™(C)) is the class of the theta divisor © and where [Jac?(C)] =

w, € CH’(Jac?(C)) is the fundamental class of Jac?(C).

Proof. We identify C' with its image j(C) in Jac*(C). Consider the addition map (Jacl(C))n —
Jac"(C). The restriction of this map to C™ is generically finite of degree n! to its image W,,.
Taking cycle classes and using the definition of the Pontryagin product gives the relation v** =
nlw,,. O

In the study of the morphisms j™): C(™) — Jac™(C) we see a clear transition from the case
n < g, when j(™ is generically finite to its image, to the case n > 2¢g — 2, when all fibres have
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dimension n + 1 — g, and C'™ is in fact a projective bundle over Jac"(C). This is a geometric
incarnation of the Riemann-Roch Theorem for curves. For the theory of Jacobians the cases
n=g— 1 and n = g are most important. We shall further discuss the case n > 2g — 2 in 77.

§3. Universal line bundles and the Theta divisor.

(14.16) Suppose the curve C' has a k-valued point ¢ € C(k). Then on C x Piccy;, we have
a universal line bundle & = Z¢ with rigidification along {e} x Picc g, which we call the
Poincaré bundle. Its universal property is that given any k-scheme T and a line bundle M
on Cp := C X, T together with a trivialisation along {e} x T, there is a unique morphism of
k-schemes h: T'— Piccyy, such that M = h* 9 as rigidified line bundles.

This Poincaré bundle depends on the chosen point € in the following way. Let &1 and €5 be
k-rational points of C, and let &?; and &7, be the associated Poincaré bundles. Consider the
morphism

(62, id): PiCC/k = Spec(k:) Xk PiCC/k — C Xk PiCC/k s

~

which is a section of the second projection pry: C' x Picg/, — Picg/g. Then we have 925 =
PR pr’g(sz,id)*@fl.

(14.17) Without the assumption that C' has a k-rational point, it is not clear how to define
or construct a universal line bundle on C x Picg /g, or on the various connected components
C x Jac™(C). In fact, it is known that in general there does not exist a universal line bundle
over C' x Jac™(C); see Mestrano and Ramanan [1]. (However, as we shall see in Thm. (14.20),
for some values of n there does always exist a universal line bundle on C' x Jac™(C).)

By contrast, over C' x C(™ with n > 1 we can easily write down a universal relative divisor.
Namely, consider the morphism s,: C' x C*~1 — C x C™ given on points by (z,D)
(z, D 4 z). Here we interprete points of C(®~1 and C(™ as divisors on C. The morphism s,, is
a closed immersion that realizes C' x C(®~1) as an irreducible divisor in C' x C™. Let us write
9, C C x C™ for this divisor. We view Z,, as a relative effective Cartier divisor over C(); as
such it has degree n. As we shall show next, Z,, is a universal divisor in C' x C™)_ by which
we mean that for any effective divisor E on C of degree n, the restriction of Z,, to C x {E} is
precisely E.

It is useful for us to reformulate the assertion that &, is a universal divisor. Namely, if
T is a k-scheme and if D is a relative effective Cartier divisor of degree n on Cr over T' then
by Prop. (14.9) we have a corresponding classifying morphism ¥(D): T — C™) = Divocﬁ;’: .
Applying this with 7 = C™ and D = &, we obtain a morphism ¢(%,): C™ — C(). The
assertion that %, is a universal relative divisor then just means that ¢(%2,,) = idam) .

(14.18) Proposition. Let n > 1 and consider the relative effective Cartier divisor 9, C
C x C™ as just defined. Then 9, is a universal divisor in C' x C™ over C™ | in the sense that
the classifying morphism (2, ): C™ — C" is the identity.

Proof. As C(™ is irreducible, it suffices to show that ¥(2,,) is the identity on the open part
U c C™ consisting of divisors of the form E = P, +- - -+ P, with Py, ..., P, mutually distinct.
But for such E it is immediate from the definition of the map s,, that (Z,)|cx(p} = E. O
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Even if this construction does not directly give us a universal line bundle on C x Jac"(C),
it will be useful in our study of the Jacobian.

(14.19) Remark. We have natural morphisms v,,: Jac™(C) — Jac*9~2~"(C) given by [L] —
lwe ® L71]. Note that vag_o_, o, is the identity on Jac”(C). In particular, on Jac?™(C) we
obtain an involution v = v,_;. By Riemann-Roch, if L is a line bundle on C of degree g — 1
then hY(L) = h° (wc ® L‘l); hence © C Jac? *(C) is mapped into itself under v.

(14.20) Proposition. Consider the morphism f: C x Jac?(C) — Jac?"'(C) given on points
by (z, M) — M(—z). Then f*Oj,co-1(c)(©) is a universal line bundle on C' x Jac?(C).

Proof. Let V C Jac?(C) be the open subset of points [M] with h°(M) = 1. The line bundle
J*Ojaco-1(c)(©) on C'x Jac? (C) gives rise to a morphism ¢: Jac?(C) — Picgyy, and the assertion
that f*Oja00-1(c(©) is a universal line bundle just means that ¢ is the identity map on Jac?(C).
It suffices to show that 9 is the identity when restricted to V. (Cf. the proof of Prop. (14.18).)

Let U ¢ C9 be the preimage of V under j(@: C9) — Jac?(C). By Abel’s Theorem j(¢)
restricts to an isomorphism U — V. Tt then follows from Prop. (14.18) that the restriction
of Ocyxc)(Zy) to C x U = C x V defines a universal line bundle on C' x V' over V. Recall
that %, was obtained as the image of the map s,: C X C=1 — C x C. Further, we have a

commutative diagram s
g

Cxcl-bH 2 OxCl

ichj(g_l)l lidcxj(g)
C x Jac?™1(0) % C x Jac?(C)
where ¢: C x Jac?” ' (C) = C x Jac?(C) is the isomorphism given by (z,N) — (z,N(z)).
Note that (N (z)) = 1 implies that h°(N) < 1; so, again by Abel’s Theorem, the morphism
ide x j9=1) is an embedding on the preimage of C xV C C x Jac?(C). The divisor in t~1(C' x V)
that we obtain in this way is just the restriction of C' x © = pr3(©). So the conclusion is that
(t71)*pr5Ogacs-1(cy(©) is a universal line bundle when restricted to C' x V. This gives what

we want because pryot~': C' x Jacd(C) — Jac?"'(C) is precisely the morphism f given by
(x, M) — M(—2x). O

(14.21) Corollary. Let j: C — Jac'(C) be the natural map. Let L be a line bundle of degree
g—2on C, and let t: Jac'(C) — Jac?"*(C) be the translation over [L]. Then the pull-back of
Ojaco-1(c)(©) viatrej: C — Jacd™!(C) is isomorphic to we @ L.

Proof. With v as in Remark (14.19), consider the morphism vtz j: C — Jac?™ ! (C); it is given
by # — we®L(z) ™! = (we ® L™')(—x). By the proposition, the pull-back of Oj,co-1(cy(©) un-
der this morphism is isomorphic to we® L~'. On the other hand, v is an involution of Jac?™!(C)
that preserves ©, 50 v*0j,00-1(¢)(0) = Ojaco-1(0y(©) and we obtain the corollary. O

In terms of divisors, the corollary says the following. Let K be a canonical divisor on C,
and let D be a divisor of degree g — 2. Consider the translated theta divisor ©p C Jac(C).
It is given by the reduced irreducible subscheme whose points are the [M] € Jac' (C) such that
M (D) is effective. Then the pull-back of ©p under the canonical morphism j: C' — Jac*(C) is
linearly equivalent to K — D.

(14.22) As another application of Prop. (14.20) we shall next prove that the theta divisor gives
rise to a principal polarization ¢g: J — J* of the Jacobian. Note that by the construction
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explained in Chapter 11, § 4, the line bundle Oj,.,-1(©) indeed gives rise to a homomorphism
vo: J — Jt. Concretely, we apply Definition (11.43) with the line bundle Oj,.s-1(©) on the
J-torsor Jac!~!(C).

Classically one usually defines the principal polarization of J by first translating the theta
divisor to the Jacobian J, avoiding the theory of Chapter 11, § 4. This is done as follows. Let
us first assume that there exists a line bundle M of degree ¢ — 1 on C'; in particular this is the
case if C' has a k-rational point. We have the translation t,;: J = Jac’(C) == Jac?”'(C), and
we can consider the divisor O, := t3,(0) on J. This divisor depends on the choice of M, but
up to translations in J it is independent of this choice. In particular, the class of O;(©)s) in
NS /1 (k), which is the class of ©,; modulo algebraic equivalence, does not depend on M. (Here
we use that Jac?”(C) is connected.) It follows from Lemma (7.15), see also (7.26), that the
associated homomorphism ¢g,,: J — J' is independent of the choice of M, so we may call this
homomorphism ¢g.

In general, C does not have a line bundle of degree g — 1 over the given field k. In this case
we may choose a finite Galois extension k C K such that on C'x we do have a line bundle M of
degree g — 1. The previous construction gives us a homomorphism pg x: Jx — Ji.. We need
to show that this homomorphism is defined over k. To prove this it suffices to show that ¢e K
is invariant under the natural action of the Galois group Gal(K/k) on Hom(Jg, Jk ). The point
here is that, because © is defined over k, we have ?(©);) = Oo s as divisors on Jg, and as just
explained, O+, and O, give the same homomorphism Jx — Jk-.

This classical construction of course gives the same homomorphism ¢g: J — J! as the
homomorphism that is obtained using Def. (11.43). To see this, remark that, with k¥ C K as
before, we have Hom(.J, J*) — Hom(Jg, Jk ), so it suffices to verify that the two constructions
agree in case C has a line bundle of degree ¢ — 1. In this case the verification is only a matter
of unraveling the definitions; see also 7?. Though the two constructions differ in presentation,
they are in essence the same.

(14.23) Theorem. The homomorphism pg: J — J' associated to the theta divisor is a prin-
cipal polarization.

Proof. We may assume that k = k and that g > 1. Choose a point zo € C(k), consider the
translated theta divisor O := 17, _;), (©) in J, and let L := 0,;(6p) be the corresponding
line bundle. Because L is effective, to prove that the associated symmetric homomorphism
o1, = @e:J — J' is a principal polarization it suffices to show that it is an isomorphism.
(Indeed, if this holds then L is non-degenerate, and by Prop. (2.22) it follows that L is ample.)

Let A(L) = m*(L) ® pri(L)~! @ pr3(L)~! be the Mumford bundle on J x J associated
to L. Recall from Def. (2.16) that K (L) is the largest subscheme K C J with the property
that Ay k() is trivial. By Thm. (6.18) we have K (L) = Ker(ype), so it suffices to prove that
K (L) = {0}.

Let i: C' — J be the closed embedding given by x — [OC (zo —x)] We have a commutative
diagram

mo (ixid)
—_—

CxJ J

idC’tha:OJ/Z ZJ/t(g—l):L'O

C x Jac?(C) B N Jacd™(C)

where m: J x J — J is the group law and f is the map (z, M) — M(—z) of Prop. (14.20).
By Prop. (14.20) it follows that the restriction of A(L) to C' x J (via the closed embedding
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i xid: C' x J < J x J) is the Poincaré bundle Z¢ on C x J with rigidification along {xo} x J
and C' x {0}. But the largest subscheme K’ C J such that ¢ g is trivial, is K’ = {0}. Hence
also K(L) = {0}, as we wanted to prove. O

(14.24) Corollary. We have deg(©9) = g! and h°(Jac?'(C),0) = 1.
Proof. This follows from the theorem by the Riemann-Roch Theorem (9.11). g
Our next topic is the connection between theta characteristics and symmetric theta divisors

in J.

(14.25) Definition. Let C be a curve of genus g over a field k. A theta characteristic on C' is
a line bundle L such that L®2? 2 ws. A theta characteristic L is said to be even (resp. odd) if
hO(L) is even (resp. odd).

(14.26) Proposition. Let k be an algebraically closed field with char(k) # 2. If C is a curve

of genus g over k then C has 229 theta characteristics, 2971(29 + 1) of them even, 2971(29 — 1)
of them odd.
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An alternative, maybe more satisfactory, definition of the theta divisor is as follows.

We assume that C' has a point P € C(k). Let L be a Poincaré line bundle on C x Jac? ™' (C),
that is, a line bundle L on C x Jac?”'(C) which is of degree g — 1 on all fibres C' x {[D]}, and
such that Loy p)y = O(D) for all [D] € Jac?~'(O).

We choose an effective divisor E of degree g on C and consider the line bundle L(E) =
L ® pitO(E) on C x Jac? ' (C). Since E is effective we thus have an exact sequence 0 —
L — L(E) — L(E)/L — 0. Let © = py be the projection of C' x Jac?"'(C) on the second
factor. Since we have H'(C,0(D)) = (0) for any divisor D of degree 2g — 1 on C it follows
that R'7,(L(E)) = (0) and we find the following long exact sequence of sheaves on Jac?™' in
cohomology

0 — R°r,L — R°r,L(FE)-*R°r,(L(F)/L) — R'7.L — 0. (6)

To be explicit, over [D] we have the exact sequence of fibres
0— H°(C,0(D)) — H°(C,0(D + E)) — O(D + E)|p — H'(C,0(D)) — 0.

Since dim H°(C,0(D + E)) = g for every divisor of degree g it follows that R%m,(L(E)) is a
vector bundle of rank g on Pic=Y(C). Also ROw,(L(E)/L)) is a vector bundle of rank g; it can
be identified with L(E) g, the direct sum of the fibres of L(E) over the g points of the support
of E. So a: R, (L(FE)) — L(FE)|E is a morphism of vectorbundles on Pic?~*(C) of the same
rank g.

(14.27) Definition. The theta divisor © C Pic9~™Y(C) is the locus where the determinant of
the bundle map o vanishes. It equals the image of og_q: Cl=1) — Jacd=H(O).

Note that by the local triviality of the two vectorbundles © is locally described by the
vanishing of a matrix and carries in a natural way a scheme structure. Furthermore, the theta
divisor does not depend on the choice of F and L. For example, if we replace E by E’ then
det(«) is changed by multiplying with an invertible function. Note that

det () vanishes at [D] <= H°(C,0(D)) # (0) <= H'(C,0(D)) # (0). (7)

Therefore the support of © coincides with the support of the image that we find the same divisor
© as above. Since © in either definition is reduced we find the same divisor. In particular, it
does not depend on the existence of a point P on C.

(14.28) Remarks. (i) Let K be a canonical divisor on C. If D is a divisor on C of degree
g — 1 then h®(D) = h°(K — D). So the map [D] — [K — D] defines an involution of Jac/™'(C)
that sends O to itself.

(ii) The sequence (6) shows that the bundle O(—©) represents the “determinant bundle”
of the cohomology of L. Its fibre over a point [D] equals

det H'(C,0(D)) @y, det H' (C,0(D)) ™"

cf. Knudson 77

(iii) We have found a canonically defined divisor © C Jac?™*(C). If y is a k-rational point
of Jac?”'(C) then ©, := t_,(©), the translate of © over —y, is a divisor on Jac(C). But of
course O, is independent of the choice of y only up to translation. So if we speak of the theta
divisor on Jac(C') we mean a divisor (or a divisor class) that is defined up to translation.
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Note that we can choose ¥, at least over k, in such a way that ©, is symmetric, meaning
that (—1)*©, = ©,. Since, as just remarked, O is stable under the involution [D] — [K — D]
the classes y € Jac?™ ! (C) for which ©, is symmetric are precisely the theta-characteristics, i.e.,
the divisor classes y for which 2y is the canonical class.

We shall now prove that the theta divisor defines a principal polarization, that is, the map
ve: Jac(C) — Jac(C)! is an isomorphism. The reason for this is the fact that the pull-back of
the divisor © — tFD](@) to C via «; is non-trivial for non-zero [D] of degree g — 2.

(14.29) Theorem. Let j: C — Jac'(C) be the natural map. Let D be a divisor of degree
g —2on C. Then the pull-back of O(©) via t;pjej: C — Jac'(C) — Jac?™1(C) is isomorphic
to Oc(K — D). Equivalently, in terms of divisor classes, j*(© — [D]) is linearly equivalent to
K —D onC.

Proof. This calculation was done by Riemann in 1857. It is no restriction of generality to extend
the base field so that C has a rational point or even to assume that k is algebraically closed.
We shall first prove the result for general D in the following sense. Consider the open subset U’
of Jac?(C) of divisors D’ of degree g with h%(D’) = 1 and such that D’ is a sum of g distinct
points. Since oy is birational U’ is non-empty. We let U C Jac?™? be the corresponding set
{D=K-D"D' eU'}.

Now for a point P of C' the image point a4 (P) lies on the divisor ¢},(0) if and only if there
exists an effective divisor of degree g — 1 on C such that P + F is linearly equivalent to K — D.
We now assume that D lies in U. Then P+ E is an effective divisor in |K — D|, hence coincides
by the assumptions on D’ with D’. So aq(P) lies on t},(©) if and only if P is one of the g points
of support of D’. Since the map C' x © — Jac?(C) given by (P, E) — P + E is generically finite
of degree g we see that the pull back under oy of the O-cycle oy (C) - t},0 equals the divisor D’.
This proves the result for D in U.

To extend our conclusion to all D of degree g — 2 we consider the pull back of O(O)
under the addition map m: Jac'(C) x Jac? ?(C) — Jac?™*(C) and the line bundle M = (a; x
idjacs—2(cy) m*O(©) on C x Jac?™2(C). The restriction of M to a fibre C' x [D] is isomorphic
to O(K — D) for [D] € U. The restriction to P x Jac?™2(C) is t50(0©) with tp: Jact ?(C) —
Jac?™(C) translation over aj(P). So M agrees by the SeeSaw Principle with the Poincaré
bundle (the variant for C' x Jac?"?(C)). But this shows that ajt%0(©) is isomorphic to O¢ (K —
D) for all D of degree g — 2. O

(14.30) Conclusion. The divisor © C Jac? *(C) defines a principal polarization on Jac(C).
In particular, deg(©9) = g! and h°(Jac(C),0(0)) = 1.

Proof. We must show that the map ¢g : Jac(C) — Jac(C)! given by z — [t:O — O] is
an isomorphism. To see this we may extend the base field. Let then D be a fixed divisor of
degree ¢ — 1 on C. Now © defines a principal polarization if and only if (—1)*© defines a
principal polarization. Therefore, we may as well look at ¢_1)+g. But by 14.29 we find that
a1 (083175 DO — 1715,0)) = Oc(D — D') with @ + [D] = [D’]. This shows that the pull back of
of the Mumford bundle A(O(—©)) is the Poincaré bundle Lp and since the maximal subscheme
over which Lp is trivial is (0) it follows that the kernel K((—1)*©) of ¢(_;)«g is trivial. The
conclusions ©9 = g! and h°(X,0(0)) = 1 follow from (?.7).

We can deduce conclusions on some cycle classes from the geometric results. Recall that
the morphism C™ — Jac"(C) is generically finite of degree n! to its image.
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(14.31) Proposition. Let v € CH? *(Jac'(C)) be the class of the 1-cycle oy (C) and 6 €
CH'(Jac?'(C)) be the class of the theta divisor ©. Then we have the relations

7*(9_1) =(g—19, v =g'ljcoc), and deg(?)=g!,

with x the Pontryagin product.

Proof. The addition map of Jac' (C)9~! — Jac? () restricted to a;(C) is a map o (C)" — ©
generically finite of degree (¢ — 1)!. This shows that 4*9—1 = (g — 1)!4. Similarly, v*9 = ¢6
follows from the fact that C9 — Jac?(C) has degree g!. From 14.30 it foolows that deg(#9) =
gl. O

§4. Riemann’s Theorem on the Theta Divisor.

A geometric translation of ‘omegaatD’ interprets the tangent space to © at a smooth point in the
following way. Let [D = ) P;] be a smooth point of ©. Then the projectivized tangent space
of © translated to the origin is the hyperplane that cuts out on the canonical image ¥ (C') the
divisor > #(P;). But one can also interpret singular points of © as Riemann showed in 1857.

(14.32) Theorem. Let D be a divisor of degree g — 1 on C'. Then the multiplicity of the theta
divisor © C Jac?"'(C) at [D] is given by

mult[D}@ = hO(D).

Proof. To verify the statement we may extend the base field to an algebraic extension. We know
that © is a Cartier divisor in Jac?™*(C), so © is locally given by one equation ¢ = 0. We know
also that © parametrizes effective divisor classes [D] of degree g — 1 on C and we thus may
assume that D is an effective divisor with h°(D) =r + 1 and r > 0.

Let m be the maximal ideal of the local ring O p) of J at [D]. We must show

9 e mr—‘rl’ 9 g mr+2'

We first show that ¥ € m"!. For this we choose local parameters z1,...,z, at [D] on J and
we expand 9 as
Y=Y+ +... Ek:[[a:l,...,:vg]],

where 9; is a homogeneous polynomial of degree j in the zq,...,x,. Note that we may and
shall identify the coordinates z1,...,z, with a basis wy,...,w, of H*(C,Q%) = H'(C,0¢)V =
T Jvac(c),O' We shall show that 94, ..., 9, vanish by interpreting them geometrically in the canon-
ical space P97!. An term ¥, is an element of SymE(H 0(C,QF) and using the isomorphism
HO(C(Q_I),QIC(g_I)) >~ HO(C,Q%) we can consider the pull back under ay_; as an element of
Syme(HO(C(g_l),Qlc(g_l))). If E =) P, is a divisor of degree g — 1 in |D| with support on
g — 1 distinct points P; with local coordinates ¢; at P; then the pull back ozz_lﬁg is given by an
expression Y a;, . ;,dt;, ---dt;,.

Recall that ¢ : C — P971 is the canonical map given by the sections of QL. If D =" P;
is an effective divisor of degree g—1 and w an element of H°(C,}) then we have by ‘omegaatD’
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that aj_,w vanishes at D € C9=1 if and only if w € H°(C, K — D), or in other words, the
hyperplane of P9~! defined by w cuts out on C the divisor Ef;ll Y(P;).

Consider now ¥1 = ) a;w; with a; = 09/0x,;([D]). If it is non-zero it defines the tangent
space to © at [D]. Suppose that » > 1. Then |D| is at least 1-dimensional. This means that
for any point @ of C there is a divisor E € |D| which contains (). The form ¥, = ) a;w; is
contained in H(C, K — E), i.e., vanishes in Q. So the hyperplane in P9~! defined by ¥; contains
the whole canonical curve. Since this curve spans P9~1 the form Y a;w; must vanish identically,
ie. ¥ =0 and ¥ € m?.

Now we consider the next term ¥y = Y a;;ww; € Sym?(H(C,QL). Tt is not difficult to
generalize ‘omegaatD’ partially and see that the vanishing of aj (3 ajjwiw;) at E € |D| C
C9~Y implies that the bilinear form Y a;;w;w; vanishes at all pairs (¥(P,), ¥ (P)) with P,, P,
in the support of E. Suppose now that r > 2. Since |D| is at least 2-dimensional we can find
for each pair P,, P, of points on C an effective divisor E in |D| containing P, and P,. We see
that the bilinear form ) a;;w;w; vanishes in all pairs (¢(Qq), ¥ (Qs). Since the canonical curve
¥(C) spans P9~! this implies that the bilinear form Y a;;w;w; vanishes identically. This implies
¥y = 0, i.e. ¥ € m3. We leave it to the reader to generalize this argument and show by induction
that J € m"*1.

We now show that 9 ¢ m”T2. We do this by showing that the pull back of the theta divisor
under a suitable map a : "t — J locally at a point E € C"+1) lying over [D] consists of
r 4 1 (smooth) divisors of the form C(").

So let D be a divisor of degree g — 1 with h°(D) = r + 1. We choose an effective divisor
E = Zrill Q; of degree r +1 on C such that

K(D - E)=0, h(D+E)=h"(D). (+)

It is easy to see that such a divisor exists. (Indeed, take successively (Qg41 outside the base
points of [D — Y, Q;| and |[K — D — Y0 Q| for £=0,...7.)
The map we consider is

a: Ot . Jacd™Y(C), F~ [D+E— F].

Then the pull back of the divisor © under « is of the form o*(©) = a1 71 + -+ + ar 412,41 + R,
where
Zi={FeC"Y . F_-Q;>0} isa divisor isomorphic to C(")

and where R = {F : h®(D — F) > 0} is a divisor that does not contain E because of (*). So
if we prove that the multiplicities a; of the smooth divisors Z; are 1 it follows that the divisor
Z::ll Z; + R has multiplicity 7 + 1 at D € C("t1D . But then © cannot have multiplicity greater
than r 4+ 1 at [D] because multiplicities can only increase under pullback and we are done.

For this we consider the tangent map T'ov of o at a general point Q; + A with A € C") of Z;
and show that Ta (T, g, +4) is not contained in the tangent space T o(q,+4) fori =1,...,7+1,
or equivalently, that there exists an n € H%(C,Q}) that vanishes on To,0(Q,+4) but with
o () # 0 on Tz, q,44.

But recall that n vanishes at the tangent space to © at a(Q; + A) if the divisor of ) contains
the effective divisors in |a(@Q; + A)|. Furthermore, a*n vanishes on the tangent space to Z; at
Q; + A if the divisor of 1 contains the divisor A.

But we are free to choose A and E as long as the conditions (*) are satisfied. So first we
choose A in C")(k) such that h°(D — A) = 1. Let D’ be the unique divisor in |D — A|. Then
we have

Qi +A)=[D+E—-Q;— Al =[D' + (E - Q).
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and we let n; be a form that vanishes in the effective divisor D' + (E — Q;). If we now choose
our @); such that the conditions (*) hold and the @; are not contained in the divisors of the n;
for : = 1,...r + 1 then we are done. But the requirements are satisfied on a dense open set.
This proves the theorem. ]

We refer to the Chapter on Singularities of the Theta divisor for more details on theta and
its singularities.

§5. Examples.

Like a multifaceted diamond, the Jacobian of a curve reflects the geometry of the curve in a
splendid way. A few examples for the low genera should make this clear.

We have already seen in Example (14.3) that Picc, — Z if g(C') = 0, so let us start with
curves of genus 1.

(14.33) Example: g = 1. For a curve C of genus 1 the Jacobian J = Jac’(C) is an elliptic
curve. By Thm. (14.4) the natural morphism of curves

§: C — Jac*(O)

is an isomorphism. In particular, C'is a J-torsor. Note, however, that C' may have no k-rational
points. For a concrete example of a curve of genus 1 without rational points, consider the plane

cubic C' over Q defined by
323 4+ 43 + 523 = 0.

This curve has no Q-rational points. The elliptic curve Jac(C') is the curve defined by
3+ 3 +602° =0

with origin (1: —1:0). See Selmer [1].
The theta divisor © C J = Jac? ' (C) is the origin O € J.

(14.34) Example: g = 2. A curve C of genus 2 is hyperelliptic: the canonical linear sys-
tem |K¢c| defines a morphism 7: C — P! of degree 2. This morphism is ramified, but the
ramification points need not be rational over the given field.

By Abel’s theorem the natural map

j(Q): c® JacQ(C)

is a birational morphism and its fibres are the linear systems of degree 2. For a line bundle L
of degree 2 Riemann-Roch gives h°(L) = 1 + h%(we ® L™1). But we ® L~ has degree 0, so
h%(we ® L™Y) > 0 only if L = we. Hence, for L of degree 2 we have

2 if L 2 we;
1 else.

no(L) = {

It follows that the map C'?) — Jac?(C) is the blow-up of Jac?(C) in the canonical point K.
The exceptional divisor is the canonical linear system |Kgo| ¢ C®), which is just the linear

- 236 —



genus3Exa

system of fibres of the morphism . If i: C — C' is the hyperelliptic involution then over k the
fibres of 7 are the divisors of the form P + i(P) with P € C(k), so we see that |Ko| ¢ C?) is
the image of C' under the morphism C' — C®) given by P +— P 4i(P). Note that this morphism
factors as

C 5P = |Ko| — 0%,

and in fact 7 is the quotient morphism of C' modulo the action of the group (i) = Z/27Z. Now
we are back at the description of the Jacobian given in (1.10).

The theta divisor is the image of the morphism j: C' — Jac'(C) and is isomorphic to C.
We see that we find the curve back from the Jacobian together with its polarization. This is in
fact true in general; see Torelli’s theorem in (‘??’) below.

(14.35) Example: g = 3. Let C be a curve of genus 3. We first determine the fibres of
the birational morphism j®): C®) — Jac*(C). If L is a line bundle of degree 3 then h°(L) =
1+ h%(we ® L™1) by Riemann-Roch. As we ® L1 has degree 1, it is effective if and only if it
is isomorphic to O¢/(P) for some P € C(k). So we find, for L of degree 3, that

(L) = {? ieisle/ ~ we(—P) for some P € C(k);

As the morphism h: C' — Jac®(C) given by P — we(—P) is the composition

[_I]Jac(c’)
—_

c-L Jac'(C) Jac™(0) tegl, Jac*(C)
it follows from Thm. (14.4) that h is a closed immersion. We claim that j®): C®) — Jac?(C) is
the blowing-up of Jac*(C) along h(C). [to do: give precise proof]

For the remainder of this example, we treat the hyperelliptic and the non-hyperelliptic case
separately. First assume C is not hyperelliptic. In this case the canonical map C' — P? gives
an embedding of C' as a non-singular quartic curve. The fibre of j(3) over the point [wc(—P)]
corresponds to the pencil of lines in P2 through the point P. More precisely, for each such line ¢
we get a divisor Dy of degree 3 such that /N C = P+ Dy, and |Kc — P)| is the linear system of
divisors D, obtained in this way.

The theta divisor © C Jac?(C) is the image of the morphism j®: C® — Jac*(C). We
claim that in the non-hyperelliptic case j® is a closed immersion. This follows from the fact
that there are no line bundles L on C of degree 2 with h?(L) > 1, as this would give the existence
of a g2 on O, contradicting the assumption that C is not hyperelliptic. (As Thm. (14.11) is a
result about the scheme-theoretic fibres of the map j(2), this fact is enough to conclude that j
is an immersion.)

The involution v of the theta divisor © C Jac?(C) has a nice geometric interpretation in
terms of the canonical embedding C' < P2. Namely, if D = P + Q is an effective divisor of
degree 2, let £ = {pg be the line in P? through P and Q. In case Q = P we take ¢ to be the
tangent line of C' at the point P. Then ¢ N C is a divisor of degree 4 (counting intersections
with their multiplicity) and we can write £ N C' = D + D’. The involution v on © is then
given by D +— D’. The fixed points of this involution correspond (working over k& = k) to the
2371(23 — 1) = 28 even theta characteristics of C; in the geometric interpretation of v we see
that these correspond to the 28 bitangents of C' C P2,

and the linear systems |D| giving rise to non-trivial fibres of C®) — Jac®(C) are exactly
the systems |K — P| where P varies through C. That is, they come from the pencils of lines
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passing through a point P on C. So the map ¢* contracts a P! for each point of C, i.e. it
collapses a P'-bundle over C. The image in Jac®(C) is a copy of C given by P [K —P]. If C
is hyperelliptic with linear system g3 of degree 2 and dimension 1, the positive dimensional fibres
of ©3 are the linear systems g3 + P with P a point of C. Again P!'-bundle over C is collapsed
under 3.

Consider now the theta divisor © C Jac? !(C). The fibres of C(?) — Jac?(C) are the
linear systems of degree 2 that move, i.e. with h°(D) > 1. But a curve of genus g that has a
linear system gs of degree 2 and dim |D| = 1 is necessarily hyperelliptic by Clifford’s theorem.
So © is isomorphic to C'® in case C' is not hyperelliptic.

Now if C is hyperelliptic the system g3 gives rise to a point [g3] € Jac?(C) with a fibre
under ¢! that is not just a point. This implies that © is obtained from C® by contracting
a curve F = P'. Now one checks easily that E? = —2 on C®), so the image of F must be a
singular point (an ordinary double point).

g=4

We distinguish two cases: C' is hyperelliptic or not. If C is not hyperelliptic then the image of
C under the canonical map C' — P3 has as image the intersection of a quadric and a cubic. If
the quadric Q is smooth and split, i.e. P! x P! then the two projections of @ to the factors P!
define two linear systems g; and go of degree 3 and dimension 1. If the quadric is non-split,
then again we have two such linear systems, but they are defined over a quadratic extension of
k. If the quadric is singular (but irreducible) then it is a cone over conic and the projection
gives one linear system ¢’ of degree 3. What are the linear systems of degree 4 that move? If
D is a divisor of degree 4 with h%(D) > 1 then h°(K — D) > 0, so K — D is represented by an
effective divisor of degree 2 on C. One can now check here that p* contracts a P! bundle over
C®, where C® is mapped to Jac*(C) by P, + P, — [K — P — Py).

To describe the theta divisor, consider the map C'®) — Jac®(C). The fibres are the linear
systems of degree 3. But a linear system of degree 3 is contained in the canonical linear system,
and one easily sees that we find only the g} mentioned before. So the morphism C'®) — Jac®(C)
contracts two copies of P! to a singular point on © if the quadric Q is smooth, but just one in
case (Q is singular.

In case C' is hyperelliptic the linear systems of degree 4 that move are of the form [K —
Py — P,], and these have h®(D) = 2 except for the linear system 2g3, with h%(2¢g3) = 3. The
linear systems of degree 3 that move are the linear systems composed with the gi: |g2 + P| with
P an arbitrary point of C. As one can check this leads to a whole curve of singularities on ©.
We refer to Ch. 77 for a more precise description of the singularities of the theta divisor.

Already some salient features emerge from this exploratory tour: in every case we can
recover the curve C' from the pair (Jac(C),©). That this is generally true is Torelli’s theorem
which we prove in section ‘The Theorem of Torelli’. We also see that as the genus rises the
divisor © acquires more singularities. In fact, for a curve of genus g > 3 we have dim Sing(©) >
g — 4 and = g — 3 for hyperelliptic curves; for this we refer to Ch. 77 and books on algebraic
curves.

§6. A universal property—the Jacobian as Albanese.
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In this section we deal with a universal property of the Jacobian that is of a covariant nature;
this in contrast with the contravariant nature of the Picard functor.

(14.36) Proposition. Let P € C(k) and let op: C — J be the morphism given on points by
Q — [OC(Q—P)] . Then every morphism of C' to an abelian variety factors uniquely through ¢p.

Proof. Suppose : C' — X is a morphism of C' to an abelian variety. Possibly after a translation
on X (which does not affect the validity of our assertion) we can assume that 3(P) = 0. Forn > 1
let 5™: C(™ — X be the morphism given on points by [Q1 + -4 Qn] — B(Q1) + - - + B(Qn).
By Jacobi’s Inversion Theorem we obtain a rational map b = 5o (j(g))_l: Jacd(C) --» X,
which by Theorem (1.18) extends to a morphism, again denoted by b. Let typ: J — Jac?(C)
be the morphism “translation by gP”. Then we have a morphism bet,p: J — X (in fact, even
a homomorphism, as the assumption that §(P) = 0 implies that bet,p sends 0 to 0), and the
composition (betyp)opp is easily seen to equal . O

Though we have a canonical morphism a;: C' — Jac'(C) there is no canonical map C' — J. As
a remedy, there is a canonical map

:CxC—J

given on points by (P, Q) + [O(P — Q)]. This morphism contracts the diagonal A C C2.

If C is not hyperelliptic then ¢ gives an isomorphism of (C' x C') \ A with its image in J.
In case C' is hyperelliptic, the map is of degree 2 on (C' x C') \ A. For more information on
the surface §(C' x C') C J we refer to Chapter 77 in which we study the geometry of the theta
divisor.

A variant of this is obtained by considering the surface C' x C' and the morphism .
(14.38) Proposition. Let a: C x C' — X be a morphism to an abelian variety that contracts
the diagonal. Then « factors through §.

We leave the proof to the reader.

The functor Picoc /1 1s contravariant, but the universal property of the proposition above
points to a covariant aspect. Let C; and Cy be (proper, smooth, absolutely irreducible) curves
and x: Cy — (5 a finite morphism. If P, € Cy(k) is a rational point defining pp: Co —
Jac(Cy) the composition ppx : C; — Jac(Cy) factors through Jac(C;) thus giving rise to
Jac(Cy) — Jac(Cs). This is the ‘covariant aspect’ we alluded to before. An abelian variety
with the universal property expressed in the preceding two propositions is called the Albanese
variety.

§7. Any Abelian Variety is a Factor of a Jacobian.

Here we show that any abelian variety over an infinite field is a factor of a Jacobian variety.
We start with a definition.

(14.38) Definition. Let C' be an algebraic curve on an abelian variety X. We say that C
generates the abelian variety X if there is no abelian subvariety of X containing C.

Note that the inclusion C' < X induces for every positive integer n a morphism C'") — X
Then C generates X if and only if the induced homomorphism Jac(C) — X is surjective.

- 239 —



AVquoJac

QuoJac

Torelli

(14.39) Theorem. Let X be an abelian variety over an infinite field k of dimension > 1. Then
X carries a smooth irreducible curve that generates X.

Proof. If dim(X) = 1 the result is clear: C' = X. So we shall suppose now that g = dim(X) > 1.
We can embed X into projective space P using an ample line bundle. By Bertini’s theorem
(reference?) there exists an open dense subset U C PV parametrizing the hyperplanes H of P
such that H N X is a smooth variety. Since k is infinite U possesses a k-rational point and we
thus obtain a smooth variety X; = H N X to which we can apply Bertini’s theorem again. Thus,
by applying Bertini’s theorem g — 1 times we find a smooth irreducible curve C' on X. We must
show that C generates X.

Note that the cycle class [C] of C in cohomology or in the Chow group CHY~1(X) is h9~!
with h the class of the hyperplane. Suppose now that C' does not generate X. By Poincaré’s
complete irreducibility theorem there exist positive dimensional abelian subvarieties Y and Z of
X such that C CY and Y x Z — X is an isogeny. Let I' on Z be an effective divisor which does
not contain the finitely many intersection points of ¥ and Z in X. Look at the divisor Y x I’
which maps finite to one to a divisor D on X. Then the intersection number C - D is zero. On
the other hand, since [C] = h9~! and because h is the class of an ample divisor the intersection
number C' - D must be non-zero. (Use that for an ample divisor the intersection number with
any curve is positive, so H - (H9~2N D) > 0.) This contradiction shows that C' generates X and
finishes the proof.

(14.40) Corollary. If X is an abelian variety over an infinite field k then X is a quotient of a
Jacobian variety.

Proof. After the preceding theorem First remark that the theorem is obviously true for dimen-
sion g = 0. If g > 0 apply the theorem. Then the map C' — X induces a morphism Jac(C) — X
which is surjective. O

Example. An example of a 2-dimensional abelian variety that is not a Jacobian is given by a
product of two elliptic curves with the product polarization. Then the theta divisor consists of
E; x {0} U{0} x E5 and this divisor is reducible, hence cannot be the image of an irreducible
curve.

§8. The Theorem of Torelli.

A crucial result about Jacobians is Torelli’s Theorem that says that we can retrieve the curve
from the Jacobian together with its principal polarization.

(14.41) Theorem. (Torelli’s Theorem)Let C; and Cy be two proper smooth irreducible curves
over an algebraically closed field k. Then C and Cy are isomorphic if and only if the principally
polarized abelian varieties (Jac(C1),01) and (Jac(Cs2),©3) are isomorphic.

There is a slightly stronger statement which says that if (X, ©) is an abelian variety and
Cy and Cy are two curves on X such that (X, ©) is the Jacobian of both C; and C5 then Cs is
a translate of C; or of (—1x)(C1). The theorem that Torelli proved was stronger. He proved
that if f : Cy — Jac(C}) is a morphism of a curve of genus g = g(Cy) such that f(C3) generates
X and deg(f*(O(0)) = g then f is an injection and f(Cy) is a translate of C; or of (—1x)(C1).
In relation to this we refer to the next Section and the Notes.
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There are many proofs for this theorem in the literature, see the Notes; here we sketch
Andreotti’s beautiful proof, cf. [An]. In the Chapter on the geometry of the theta divisor we
shall give another proof.

Proof. It is immediate that if C'; and C5 are isomorphic their polarized Jacobians are isomorphic.
So it suffices to prove that for a proper smooth irreducible curve C' we can recover C' from the
pair (Jac(C), ©). To do this we shall consider the Gauss map of the theta divisor © C Jac?™!(C)
that associates to a smooth point of © its tangent space translated to the origin:

Y:Oum — P, [D] = To p) C Thaco-1(c),(p] = Trac(c),0

where PV is the projective space of hyperplanes in T' Jac(C),0- Note that it is also the dual of the
projective space P9~! to which the canonical map ¢ = Tj : C' — P97 of C goes.

Now recall the description of the tangent space to © at a smooth point [D] of ©, cf.‘omegaatD’.Jj
If [D] is represented by a unique effective divisor Zf:_ll P; then the tangent space to © trans-
lated to the origin is the hyperplane spanned by the points ¥(F;): v([D]) = Span(y(F;),i =
1,...,9 —1). We define

I' = closure of the graph of v in © x PV

and let T' be the normalization of I'. We have a natural morphism psy : I — PV induced by
projection onto the second factor. We let B be the branch locus in PV of ps. The beautiful idea
behind the proof is now that (at least for non-hyperelliptic curves C') the branch locus of ps is
the so-called envelop of ¥(C), i.e. the set of hyperplanes tangent to ¢(C'), and this determines
C. We now distinguish two cases.
Case 1. (' is not hyperelliptic. In this case we shall identify C' with its canonical image
P(C) C P. We need the following lemma from the theory of curves. (Reference 7)

curvelemma (14.42) Lemma. Let C be a non-hyperelliptic curve of genus g > 2. Then the canonical image
has only finitely many bitangent lines (i.e. lines that are tangent to at least two different points).
Moreover, a general canonical divisor K consists of 2g — 2 distinct points and any g — 1 of them
are linearly independent, i.e. for any effective divisor D of degree g — 1 contained in K we have
h°(D) = 1.

The lemma implies that for a general hyperplane H C P the canonical divisor H -C contains
(299__12) divisors D all of which give classes [D] in Ogy,. In particular, for a general H the fibre of
v is contained in the smooth locus Oy, and v is unramified in the fibre over H.

In order to describe I’ more precisely we consider the variety
Iy ={(D,H) e C9™Y xPV: H.C contains the divisor D}.

This is a closed subset of C9~1) x PV and we have an embedding O, — Iy given by [D]

(D, H), with D the unique effective divisor representing [D] and H the hyperplane spanned

by it. The second projection projection 79 = po extends v : O, — PY. Obviously, g is a

quasi-finite separable map of degree (299_—12)’ hence a finite map. There is a natural morphism
'y — I’ with (D, H) — ([D], H) which is quasi-finite and generically of degree 1. Therefore the
map of the normalization T' to PV factors through I'y and it is a finite map. We study now its
branch locus B.

branchnh (14.43) Lemma. The branch locus B is irreducible and coincides with the envelope CV =

{H € PV : H is tangent to C' at some point}.
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Proof. It follows immediately from the definitions that the branch locus is the envelope. It is
well known that the envelope of a smooth irreducible curve is irreducible (see Exercise).

So to prove Torelli’s theorem for non-hyperelliptic curves we have to show that we can
recover C' from CV. For this we refer to [ 7].

Case 2. (' is hyperelliptic. We denote the hyperelliptic involution of C by . In this case the
canonical image of C is a rational normal curve R in P and we have maps

el R(Q—I)L)R

where the first map is of degree 297! and p is the regular map that associates to D the hyperplane
spanned by D. Note that p is indeed regular: if R is obtained by embedding P! into P via
t— (L:t:t?:...:t971) then p is given by (t1,...,t5-1) — (04—1 : 04—2 : ... : 0¢) With o the
j-th elementary symmetric function in the ¢;. The map ¢ is the canonical map of C9~1. The
analogue of 14.43 is now

(14.44) Lemma. The branch locus of ¢ is reducible and consists of the envelope of R and the
hyperplanes dual to the branch points of p : C' — R.

If the characteristic is not 2 it is easy to retrieve the curve C' from the Gauss map © — PV:
the 2g 4+ 2 hyperplanes determine the branch locus of ¢, hence the hyperelliptic curve C'. But
this argument does not work in characteristic 2.

We now give an argument that works for every characteristic. We consider the map ¢ :
C9=1D — PV and the image of the small diagonal § of C9~1) under . It is given by associating
to P € C the osculator hyperplane to R at ¢ (P) (which intersects the curve at ¢ (P) with
multiplicity g — 1). The inverse image ¢~ *(8) consists of the images on C9=1) of the maps

di:C—CY™V Q—iQ+(g—1-1)Q° (0<i<[(g—1)/2)).

Note that the degree of inseparability of dy is p® with a = ord,(g — 1). Thus we can retrieve
C from the image of dy. But we have to see that the isomorphism class of C9~1) determines
the image of dy. To distinguish the image § of dy from the images of the other d; we have the
following lemma whose proof is left to the reader.

(14.45) Lemma. The fixed part of the canonical system of C9~1) consists of g} + C973) C
Ce—1),

It now suffices to observe that the base locus gi + C'9 —3) of the canonical system of C'(9—1)
contains the images of the maps d; for i = 1,...,[(¢g — 1)/2], but not the image of dy. So the
isomorphism class of C9~1) determines the image of dy and that determines the isomorphism
class of C. This completes the proof of the Torelli theorem. O

§9. The Criterion of Matsusaka-Ran.

In this section we give a criterion for deciding that an abelian variety is a jacobian. For later
convenience we formulate it not only for smooth curves, but for stable curves of compact type
as defined in the following definition. The proof is due to Collino [Co].

Definition A connected complete reduced curve is called of compact type if the curve is a stable
curve whose dual graph is a tree.
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MatsusakaRan (14.46) Theorem.  The Criterion of Matsusaka-Ran. Let (X,L) be a polarized abelian
variety of dimension g and let C' be an effective 1-cycle on X which generates X such that the
intersection number C-L < g. Then C'is a reduced stable curve " ; C; of compact type whose
components C; are smooth irreducible curves and (X, L) is isomorphic to the Jacobian Jac(C')
, i.e. to the product of the canonically polarized Jacobians [[;_, Jac(C;) of the components.

Proof. We write C' = Z?:l m;C; with distinct irreducible reduced curves C; and we denote the
normalization of C; by C; and its genus by g;. We denote the embedding Creq — X by ¢. The
natural map C; — C; — X factors through the Jacobian Jac(C;), say via v; : Jac(C;) — X,
by the (covariant) universal property of Jac(C;) as explained in Section 3. By Exercise (IL,??)
we know that we can represent L by an effective reduced divisor D. The Moriwaki-Matsusaka
construction (see Chapter on End) gives us now an endomorphism a(C,L) : X — X. If we
translate C' the map a(C, L) does not change, so if we assume that D does not contain any
component of C the map «(C, L) is given on an open set of X by z — sum(C - (D +z)—C- D).
It is then clear that o(C, L) fits into a commutative diagram

a(C,L): X 2, [[Jac(C:) % X
A s
Xt

where ¢ = (¢1,...,%,) and where A(z) = [(D + x) — D]. The dual of ¢* is —¢ by 14.29 and
Exercise 77. Now % is surjective since C' generates X, hence (* and (*\ have finite kernel. It
follows that dim [, Jac(C;) = g. Now we know that 3.7 m;C; - L < g, but on the other
hand by construction the map ¢ factors through X — C§d1) s X C’T(Ld "0 with d; = C;- L, hence

g=dima(C,L)(X) <> (C;,L) < g

and by comparing we get m; =1 for i =1,...,n and C; - L = dim Jac(C;) and Y. ¢; = ¢.

We must show that 1 is an isomorphism of polarized abelian varieties. We do this by
showing that ¢*(L) is a principal polarization and then by showing that it coincides with the
canonical polarization on this product of Jacobians.

Suppose that ¥*(L) is not a principal polarization. Let D be a reduced effective divisor
representing L. Then the linear system |D| has dimension > 1 and also all translates t; (D)
have this property. Consider a general translate ' = t;(D) and an effective divisor G # F
linearly equivalent to F'. Since y is general the pullbacks of F' and G under v; are distinct and
it follows that the pullback of ;(D) is a special divisor of degree g; on C;. But this divisor
is the pull back of #; (D) - C; and this is the image of y under the i-th component of g. This
implies that the general element of Jacgi(é’i) is a special divisor, a contradiction. We thus see
that ¢/ (L) is a principal polarization. Moreover, the map ¢; : Jac(é) — X is an embedding
because @y« (1) = Qj)zgo LY; is an isomorphism. Now if ¢ # j the map w] pr; is zero (see Exercise
..) and thus

oper =Ly => [[wierw; =[] diert
7 7 7

implying that ¢*L and ®;p] ;L are algebraically equivalent. Thus ¢* L is a principal polariza-
tion. We also see that 1 is an isomorphism and C; & C’l

Since % is an isomorphism two curves C; can intersect in at most one point. Otherwise,
the difference of the two intersection points would give a non-zero element in Jac(C;) N Jac(C}).
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Similarly, an non-transversal intersection would yield a non-zero group scheme in Jac(C;) N
Jac(C;). This implies that C' is stable.

By induction on the genus we may assume that the theorem holds for lower dimensional
abelian varieties, hence if C' is reducible we are done. So we may assume that C' is irreducible.
It follows from the diagram that «(C, L) is an isomorphism of abelian varieties.

We must show that the principal polarization ¢* (L) is the canonical polarization O(©) of
Jac(C'). Recall that © is up to translation the divisor of effective divisors of degree g — 1 in
Jacd™1(0).

For general x € X we have an identity C'-t;D = 1 + ... + x4, where z1,...,z, are points
of C' (and X) up to order uniquely determined. This establishes a birational correspondence
b: CW — X which is the composition of the natural map C'9) — Jac(C) with ¢~' and since we
now know that ¢ is an isomorphism b is a morphism. Then z, € t; D, i.e. z+x, € D. Therefore
we see that D contains the image of

B:CY™) x C — X = Jac(C), (m + .oy, xg) = b(x, . Tg) + 2.

We claim: D coincides with the image of §. Indeed, if D is larger than the image of 3, then the
closure of D —Im(f) is a divisor D’ in Jac(C'). A general translate of C' intersects both D" and
Im(3) outside the intersection D’ N Im(3). We may then even assume that the translate is C
and then have C-D =21 +... + 241 + w with w € D’. Then we have 8(z1,...,24-1,w) = w,
outside the image of 3, a contradiction.

By the rigidity lemma the morphism 3 is of the form 3’ + 8" with 8’ : C97! — Jac(C) and
B : C — Jac(C) morphisms. For fixed y € C the image of C9~1 x {y} under # has dimension
g — 1 since b is generically injective. It follows that S(C'9~1 x {y}) = D. Since D is a principal
polarization no non-trivial translations leave D fixed and it follows that 8" contracts C' and we
may thus suppose that 3” = 0. We thus have for every point (z; +...+z, 1,74) € CO™) x C
an equality

b+ ... +xy) =Fx1+... +24-1,29) — 4.

We now fix g — 1 points ¢y, ...,c4—1 on C. Then we find
Blar+...+xg1) —xg=blx1+...+24) =blxa+... + 241 +21)
=0z +...+xg,21) —x1 =P(x2+ ... +24,01) — 1
=bxa+...+x4+c1)+ (c1 — 1)
Repeating the argument gives

g—1
Bmr+ ... +3go1) = 2 =blcr + ...+ cgo1 + 39) + Y _(c; — ;)
=1

g—1
=0'(c1+...+cg-1) —xg+ Z(C’ — ;).
i=1

This shows that D is a translate of (—1)*© and finishes the proof of the theorem. O

(14.47) Corollary. A principally polarized abelian variety which is a specialization of a Jaco-
bian is a Jacobian of a stable curve of compact type.

Proof. A specialization of an effective 1 cycle is an effective 1 cycle. Also the degree L - C is
preserved under specialization.
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Intermezzo
Intermezzo: the Moriwaki-Matsusaka endomorphism; hoort in Hoofdstuk over End

Let A and B be effective algebraic cycles on a g-dimensional abelian variety X of comple-
mentary dimension. That means, A (res. B) is an element of the free abelian group generated
by the subvarieties of X of dimension a (resp. of dimension b = g — a. We now define an en-
domorphism «(A, B) to the pair (A, B) following Moriwaki and Matsusaka as follows. For a
general point € X the intersection of t3A and B will be a proper O-cycle E‘Zzl p; of degree
d = deg(A - B). In this way we get a rational map that extends to a morphism (by ..) and after
translation this becomes an endomorphism:

X Xd/Sd sum XtranslationX

z— (A—2x)NB
Since a(A4, B)(0) = 0 we see that we can write
a(A,B) =sum(t;(A)-B— A- B),

whenever this is defined.
Lemma. If A and A’ are algebraically equivalent then o(A, B) = a(A’, B).

Proof. Let Ay (with s € S) be a family of algebraically equivalent cycles. We may assume
that S is normal. Then we get a morphism

B(A,B): X xS — X, (z,5) — a(As, B)(x).

This satisfies ({0} x S) = 0. Define 3’ via §'(z,s) = f(x,s) — B(x, sp) for some fixed point
sg € S. Then /(X x sg) = ({0} x S) = 0, hence by the Rigidity theorem (' is constant and
this implies that § factors through px. [

§6 The genus of a simple abelian variety

Let X be an abelian variety of dimension g over an algebraically closed field k. If X is
isomorphic to the Jacobian of a curve C then X carries a smooth proper curve of genus g. If X
is simple, then X does not carry any curve of smaller genus. For if i : C' — X is of genus ~ then
we get a homomorphism X* — Jac(C) which is non-zero (an ample line bundle L on X is not in
the kernel) which is not compatible with the assumption that X is simple. If X is isogenous to
a Jacobian, say r : Jac(C) — X is an isogeny, then a suitable translate of the image of C' under
¢ : C — Jac(C) has as image under r a curve of genus g.

Definition. Let X be a simple abelian variety over a field k. Then the genus of X is the
smallest geometric genus of a complete irreducible reduced curve on X.

A first remark is that the genus of a simple abelian variety does not change under isogenies. In
characteristic 0 we may therefore assume that X is principally polarized. Very little is known
about this invariant. In [BCV] it is proved that the general 4-dimensional principally polarized
abelian variety has genus 7 and the general 5-dimensional principally polarized abelian variety
has genus 11. The question: what is the maximum genus of an abelian variety of dimension ¢
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seems very interesting. A related invariant is the minimal effective class. If (X, ©) is a principally
polarized abelian variety then let

0=[07""/(g— 1 € H*(X),

where cohomology means Betti cohomology with integral coefficients or ¢-adic cohomology with
¢ # Char(k). (Weyl cohomology) It follows from the Matsusaka-Ran criterion that a curve C
on X that generates X has intersection number > g with ©. Therefore, if C is a curve on X
and if [C] is a rational multiple of # then [C] is an integral multiple of §. We define

¢(X,0) =min{n € Z>; : ¢ is representable by an effective 1-cycle C' on X}.

For Jacobians ¢(X, ©) equals 1. For Prym varieties is equals 2. It seems an interesting question
to determine ¢(X,©) for the general principally polarized abelian variety of dimension g. We
refere to papers by Debarre.

Exercises

Exercise. Let C be a complete non-singular curve over a field k. We denote by a: C'xC("~1 —
C™ the natural map. Prove that Qém) is isomorphic to a.(piQy) with pi: C x C"=1 — C
the first projection.

Exercise. Prove that for n > 1 the n-th symmetric product of P! is isomorphic to P". Show
that for a smooth, absolutely irreducible curve over a field the variety C'(™ is projective. (Hint:
use a finite morphism C' — P*.)

Let C be a proper smooth absolutely irreducible complete curve over a field k and let P € C(k)
be a point. Prove that the map ¢p : C — Jac(C) induces by pulling back line bundles the
isomorphism (—pg)~! : Jac(C)t — Jac(C)

(Bij Poincaré Irreducibiliteit?) Let X,Y be subvarieties of the abelian variety Z with inclusions
£:X —>Zandn:Y — Z and £(X) Nn(Y) finite. If L is a polarization on Z then nlpr& =0:
X — Yl

Exercise. Let af be the map Pic’(Jac'(C)) — Jac(C) given by pulling back line bundles on
Jac'(C) to C via a;. Show that a* is an isomorphism.

Let X and Y be varieties and Z an abelian variety. Suppose that one of X and Y is complete.
If f: X XY — Z is a morphism, then there exist morphisms g : X — Z and h: Y — Z such
that f = g + h. Prove this. (In het hoofdstuk met het stijfheidslemma.)

Notes

For a long time the theory of abelian varieties was synonimous with the theory of Jacobians.
The work of Riemann [R1, R2] was a milestone in the development. He introduced the theta
divisor and interpreted the singularieties of the theta divisor on a Jacobian in terms of linear
systems on the curve. Torelli made two key contributions to the theory. He showed that
one can retrieve a curve from its Jacobian together with the theta divisor. Moreover, Torelli
observed that every abelian variety is a quotient of a Jacobian. All these authors worked over the
complex numbers. In the beginning of the 20th centure the need was felt for an algebraic theory
of Jacobian variety in order to be able to deal with curves over number fields and over finite
fields. This theory was created by A. Weil and in order to do this he had to lay new foundations
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of algebraic geometry. He constructed the Jacobian of a curve C' of genus g by starting from the
symmetric power C9) and by extending the birational group law. His celebrated proof of the
Riemann hypothesis for curves over finite fields was a direct corollary. The present approach
towards the Jacobian via representability of the Picard functor is due to Grothendieck. We
refer to his exposés FGA. The criterion of Matsusaka-Ran was proved by Matsusaka for smooth
curves in 19.., but a form of it is already in the work of Torelli, cf. [T?]. Ran extended it [R7?].
We follow the clear proof of Collino [Co]. There are many proofs of the Torelli theorem in the
literature. A sort of survey is found in Mumford (Curves and their Jacobians). We shall give
another prove in the Chapter on the Geometry of the Theta Divisor. Yet another proof is in
Polishchuck. We refer to (Andreotti, Beauville, Ciliberto, Collino, Matsusaka, Mattuck-Mayer,
Weil). Our proof Riemann’s theorem on the singularities of © follows [A-C-G-H].
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Chapter XV. Dieudonné theory.

§1. Dieudonné theory for finite commutative group schemes and for p-divisible groups.

(15.1) Basics on Witt vectors, mainly to set up notation. Introduce o = ’Frobenius’ = endo-
morphism induced by x +— 2P on residue field. Introduce Zy. = W (F,«) and Qpa.

(15.2) Let R be a commutative ring with identity. Let a be an endomorphism of R. If M; and
My are (left) R-modules then by an a-linear map f: M; — M, we mean an additive map with
the property that f(rm) = a(r)- f(m) for all r € R and m € M;. If it is clear which « we are
considering then such a map is also simply called a semilinear map.

A semilinear map can be linearized. For this we consider the R-module M 1(a) = R®p,a Ma,
obtained from M; by extension of scalars via a: R — R. Then an a-linear map f: M} — M
gives rise to an R-linear homomorphism f*: Ml(a) — Mo by f¥(r @ m) = r - f(m). Note that
this is well-defined, as f*(r ® sm) = r- f(sm) = ra(s) - f(m) = f*(ra(s) @ m). Conversely, to a
homomorphism of R-modules g: M;"’ — My we can associate the a-linear map ¢: My — M,
defined by ¢”(m) := g(1®m). One readily checks that these constructions are mutually inverse:
(f©> = f and (¢°)* = g. Hence an a-linear map may also be described as an R-linear map
A4$a) — M.

(15.3) Definition. Let R be a ring with identity. Let a be an endomorphism of R, and let ¢
be an indeterminate. Then the skew polynomial ring R[t;a] is the ring of polynomials in the
variable ¢ with coefficients in R, in which

(a) addition is as in the usual polynomial ring R[t];

(b) the ring multiplication is distributive and satisfies ¢ - ¢ = a(c) - t for all ¢ € R.

In other words, the only new aspect is that the variable ¢ does not commute with the
coefficients (unless a = id), but is “a-linear”.

By iteration of (b) we find that t" - ¢ = a™(t) - t" for all n € N and ¢ € R. Clearly, if
a = idg then R[t; o] is just the ordinary polynomial ring. If « is not the identity then R[t; o] is
non-commutative.

In the sequel it will usually be clear which endomorphism o we are taking, and especially
in the context of Dieudonné modules we shall occasionally drop the a from the notation.

(15.4) Definition. Definitie Dieud modules, category DM /;, full subcats DM%C and DMt/?;S.
Dual of a Dieud module.

(15.5) Main theorem on Dieud theory for finite flat group schemes + Cartier duality.
(15.6) Examples

(15.7) Maybe something on consequences for finite group schemes. Eg, only simple group
schemes over k = k are u,, Z/pZ, Z/{Z, c,. Are there further things we need at some point?

(15.8) Dieud mod of a BT, Serre duality.

DTheory, 8 februari, 2012 (635)
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DTheoryRem (15.9) Some general comments on Dieud theory; covariant vs contravar; references to literature. cry
iso

§2. Classification up to isogeny.

ClassIsogIntro (15.10) Throughout this section, k denotes a perfect field of characteristic p > 0. We write
W := W (k) for its ring of Witt vectors, L for the fraction field of W, and o for the automorphism
of W (and also of L) induced by the Frobenius automorphism x — a? of k.
If N is a finite dimensional L-vector space then by a W-lattice in L we mean a W-submodule
M C N such that the natural map L ®y M — N is an isomorphism. (Equivalent: M is free of
rank dimy, (V) as a W-module.) If M; and My are W-lattices in N then so are My + My and
My N Ms. We define

X(My : My) := lengthy, (M/M>) — lengthy, (M/M) ,

where M is any W-lattice in N containing both M; and Ms; this is easily seen to be inde-
pendent of the chosen M. In particular, if My C M; then we simply have y(M; : My) =
lengthy, (Mq/Ms). If Ms is a third lattice we have the relation x(M; : Ms) = x(M
Mg) + X(MQ . Mg)

Our main goal in this section is to discuss a number of key results on the classification
of p-divisible groups over k£ up to isogeny. Dieudonné theory allows us to translate this into a
problem in semi-linear algebra. More precisely, we are led to consider finite dimensional L-vector
spaces N together with a bijective o-linear operator F': N — N. We refer to such a pair (N, F')
as an F-isocrystal over k. Not all F-isocrystals arise from a p-divisible group; a necessary and
sufficient condition for this is that there exists a W-lattice M C N with p- M C F(M) C M.
Still, it proves an advantage to work with general F-isocrystals, and in fact these naturally
appear in the context of crystalline cohomology; cf. () below.

An F-isocrystal can be viewed as a module over the skew polynomial ring L[F;o]. To be
precise, the modules that we are interested in are those whose underlying L-vector space is finite
dimensional and on which the action of F' is bijective. This brings ring-theory into play, which
in this context is very helpful, as L[F’; 0] is a non-commutative principal ideal domain and there
is a good general theory of modules over such a ring; see Jacobson [1], Chap. 3.

Another possible approach—the one we shall take—is to exploit that two W-lattices in
a finite dimensional L-vector space can be compared, and this gives rise to useful discrete
invariants. If (N, F') is an F-isocrystal and M C N is a W-lattice, we can measure the relative
position of M and F(M), and express it in a polygon, called the Hodge polygon of (M, F).
Pushing this further, one may also look at F2(M), or the image under M under higher powers
of F. To create the right context for this, we shall consider pairs (N, F') as before where the
“Frobenius” F' is not necessarily o-linear but can be o®-linear, for some a € Z. Such objects are
called o%-F-crystals.

Information about the asymptotic behaviour of F' can be encoded in a second polygon,
called the Newton polygon of (N, F'). In contrast with the Hodge polygon, the Newton polygon
only depends on (N, F'), not on the choice of a lattice M C N. Among the main results of this
section is a theorem of Dieudonné, Theorem (15.33), which says that over an algebraically closed
field k£ an F-isocrystal is classified by its Newton polygon. In concrete terms this means that we
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FCrysDef

FIsocDef

have a collection of explicitely defined F-isocrystals .45, one for each A € Q (the Newton slope),
such that any F-isocrystal over k = k is isomorphic to a direct sum of such objects .44.

In the approach we take, Dieudonné’s Theorem is preceded by another import result, valid
over any perfect field k of characteristic p, which says that an F-isocrystal has a canonical
decomposition into isoclinic pieces. See Theorem (15.30). An F-isocrystal (N, F) is called
“isoclinic” if there exist a W-lattice M C N and integers r and s > 0 such that F*(M) = p"- M,
the quotient 7 /s is then called the slope of (N, F'). The proof of Theorem (15.30) requires some
preparations, all completely elementary in nature, but once we are there Dieudonné’s Theorem
hardly requires further work. As a bonus we obtain a useful result about F-isocrystals over
a finite field, that allows to calculate the Newton polygon in a very simple manner from the
characteristic polynomial of a suitable power of F'.

A final key result in this section... Mazur??

Though we are mainly interested in F-crystals, we shall state and prove results in the more
general setting of o%-F-crystals. This is not just out of academic interest; it actually leads to
much simpler proofs. A typical trick, that we shall use several times, is that we can pass from
a 0% F-isocrystal (N, F) to a o%-F-isocrystal (N, F') with F’ = p”F* for suitable integers v
and s. By this, we can reduce several arguments to the isoclinic case with slope = 0, and in
this we can often prove what we want by an easy direct argument. See the proofs of ... for nice
examples of this.

Our exposition of the material in this section closely follows Zink [1].

(15.11) Definition. Let a € Z. Then a o®-F-crystal over k is a pair (M, F') consisting of a
free W-module M of finite rank, together with a o®-linear injective map F: M — M ®w L.

A morphisms of ¢% F-crystals f: (M, Fy) — (Mas, F5) is a homomorphism f: M; — M,
of W-modules (so a W-linear map) such that foF; = Fyof. We denote by o%-F-Crys ), the
category of g% F-crystals over k that is thus obtained.

The map F' is not required to take values in M itself; it is allowed to have “denominators”.
If F(M) C M then we say that the crystal is effective. The condition that F' is injective
implies that the induced map M ®w L — M ®yw L is bijective. We shall use the notation
]Vﬂ@ =M ®w L = A4-Q§Zp (Qp =M ®7Q.

Note that in the definition of a morphism, the identity foF} = Fyo f is an identity of maps
M, — Ms g, so the “f” on the left has to be interpreted as the linear map M; g — M> g induced
by the given f: My — Ms.

If @ = 0 then a 0% F-crystal is of course just a finite free W-module M together with a
linear injective map M — Mg. We shall mainly be interested in the case a = 1. In this case one

[t

usually drops the prefix “o”; so by an F-crystal we mean a o-F-crystal, and we write F-Crys
for o-F-Crys .. The category DM?r,fe of torsion-free Dieudonné modules is equivalent to the full
subcategory of F-Crys,, consisting of all F-crystal (M, F) with p- M C F(M) C M, as these

inclusions are equivalent to the existence of a map V: M — M with FV =p-idy; = VF.

A homomorphism of o%-F-crystals f: (M, Fy) — (Ma, f2) is called an isogeny if the induced
map My g — Moy g is bijective. If one wants to study o“-F-crystals only up to isogeny, it suffices
to know the L-vector space Mg together with its o“®-linear Frobenius. Thus one is led to the
following notion of an isocrystal.

(15.12) Definition. Let a € Z. Then a o%-F-isocrystal over k is a pair (N, F) consisting
of an L-vector space N of finite dimension, together with a bijective, o%-linear endomorphism
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F: N — N.

A morphisms of F-isocrystals f: (N1, Fy1) — (Na, F3) is an L-linear map f: Ny — N such
that foFy = Fyo f. We denote by o%-F-lsoc/;, the category of o%-F-crystals over k that is thus
obtained.

Note that o?-F-lsoc/, can also be described as the category of modules over the ring
L[F, F~1] with finite dimensional underlying L-vector space; here the F in L[F,F~1] is -
linear, so F' - ¢ = o%(c) - F for all ¢ € L. This category can also be identified with a full
subcategory of the category of modules over the skew polynomial ring L[F;c®], namely the
subcategory of modules that are of finite L-dimension and on which the action of F' is bijective.

As before, we are mainly interested in the case a = 1. By an F-isocrystal we mean a
o-F-isocrystal, and we shall abbreviate o-F-lsoc,, to F-lsoc ;.

If (M,F) is a o®F-crystal then (Mg, F') is a 0% F-isocrystal. In the other direction,
if (N, F) is a 0% F-isocrystal then for any W-lattice M C N the pair (M, Fjy) is a 0%-F-
crystal. Up to isogeny the o®-F-crystal thus obtained is independent of the choice of the lattice.
Indeed, if M7 and M, are W-lattices in N then there exists a v € Z with p”M; C M>, and
then -p”: My — M; gives an isogeny from (M, Fiay, ) to (Ma, Flar,). So indeed the isocrystals
describe crystals up to isogeny, much in the same way as we can pass from abelian varieties
over some basis to the category of abelian varieties up to isogeny. More formally, the category
o®-F-lsoc/;, is equivalent to the localization of the category o®-F-Crys /i ETC

We say that an isocrystal (IV,F) is effective if there exists a W-lattice M C N with
F(M)C M.

The category o”-F-Isoc/; is abelian. The category o-F-Crys ;, is additive but not abelian.
We still have, in an obvious way, notions like direct sums, kernels and sub-objects. Further, if
(M, F) is a 0% F-crystal and M’ C M is a primitive W-submodule that is stable under F' then
M /M’ with Frobenius induced by F' is again a c%-F-crystal. Here we recall that a W-submodule
M’ C M is called primitive if M /M’ is torsion-free.

If &k C k' is an extension of perfect fields we have a functor

“extension of scalars”: ¢-F-Crys ), — 0%-F-Crys ./,

sending a pair (M, F') to (W(k’) Qw (k) M, 0% ® F) Note that if k is finite, this functor depends
on the integer a, not only on the automorphism ¢®. The point is that if k£ has cardinality p™
then 0% only depends on the class of a modulo m. A similar remark applies to isocrystals.

(15.13) Let (M, F) be a g% F-crystal over k. The rank of M as a W-module is called the
height of (M, F'). Similarly, the height of a o®-F-isocrystal (N, F') is defined as the L-dimension
of the underlying vector space N.

Writing N := Mg we have that M and F(M) are both W-lattices in N. Hence there exist
integers r < R such that pf- M C F(M) C p" - M, and we can define ord(F), the p-adic order
of F', by

ord(F) :=max{r € Z | F(M)Cp"-M}.

We shall later re-encounter ord(F') as the first Hodge slope of (M, F'); see (15.16) below. The
p-adic order of F' in general depends on the lattice M C Mgy, i.e., it is not an isogeny-invariant.

For any n € Z we may consider the nth iterate (M, F™), which is a ¢*"-F-crystal over k.
Note that this also makes sense for n < 0. As we shall see later there is no simple rule to
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calculate ord(F™) from ord(F'). The asymptotic behaviour of ord(F™) for n — oo is encoded in
the first slope of the Newton polygon of (M, F); see (15.21) and () below.

Another useful way to construct new crystals out of a given one is simply to multiply F' by
a power of p. So, for any m € Z we can consider (M,p™F'), which is again a o®-F-crystal. It
should be regarded as “(M, F'), Tate-twisted by m”, just as we can consider the Tate twists of
a Hodge structure or a Galois representation. (Cf. 7?7) We have ord(p™F) = m + ord(F).

(15.14) If (M, Fy) and (Ma, Fy) are two o%-F-crystals over k (for the same exponent a) then
we define the tensor product (M; ® Ma, Fy ® F5) to be the o%-F-crystal with underlying module
M, ®w My and with Frobenius given by (F} ® Fg)(ml ® mg) = Fi(m1) ® F5(ms). Note that
F1 ® F; is well-defined and is indeed again o“-linear.

The ith exterior power A%, M, which by definition is a quotient of M ®?, inherits the structure
of a o%-F-crystal (M, F) with Frobenius given by (A'F)(mi AmaA---Am;) = F(m1) AF(msa) A
—o N F(my).

Analogously we can define tensor products and exterior powers of isocrystals.

If (N,F) is a 0% F-isocrystal of height h then det(N) := A" N is an L-vector space of
dimension 1. Write det(F) = A"F, and choose any 0 # e € det(N). Then there is a non-zero
¢ € L with det(F)(e) = c¢-e. The actual value of ¢ depends on the chosen generator, but its
valuation does not. Indeed, a different generator is of the form ¢’ = b- e for some b € L*, and
then F(e') = ¢ - ¢’ with ¢ = (0%(b)/b) - ¢, which has the same order as c. Hence we can define
orddet(F') := ord,(c), where ord,: L* — Z is the p-adic valuation with ord,(p) =1. f M C N
is any W-lattice in N then the number orddet(F) defined in this way equals ord(det(Far)) as
defined above; here we write iy := F|p; and det(Fyy) := AP Fyr. So, whereas in general ord(Fyy)
depends on the lattice M, for the determinant the p-adic order only depends on the isocrystal.
Also note that, using the notation introduced in (15.10), we have orddet(Fa) = x (M : F(M));
see Exercise (15.1).

(15.15) To a o F-crystal we shall associate a Hodge polygon and a Newton polygon. Such
a polygon is given by a finite sequence of rational numbers 1 < ry < --- < r,. One can also
describe it by giving a strictly increasing sequence Ay < As < -+ < A together with multiplicities
mi,mg...,my (in Zs), where the A; are the values that occur in the sequence of r;, and m; is
the number of times that A; occurs. So we have

TL=T2 = =Ty = A

Trmg+1 = = Tmytmy = A2
Tmitmatl = " = Tmytmotms = A3
Tmyi4-4me_141 = = Tmy+omy = At

The numbers \; are called the slopes of the polygon.

In practice it is often convenient to have a graphical representation of a polygon. For
this we consider the graph of the piecewise linear continuous function ¢: [0,n] — R that has
©(0) =0 and ¢(i) =ry + 712+ ---+1r; for 1 < i < n, and that is extended linearly between
consecutive integers. In terms of the slopes A; this means that ¢ is linear with slope A; on the
interval [mi +---+mj;_1,m1 +---+m;|. In other words, we start at the point (0,0), draw a
line segment to the point (mq,my A1), from there draw a line segment to (my+ma, miA\;+mads),
ete.
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Thus, for instance, if the polygon is given by the sequence —2, —2, —1/3, —1/3, —1/3, 0, Hod
1/2, 1, 1, 4 then the slopes are —2, —1/3, 0, 1/2, 1, and 4, with multiplicities 2, 3, 1, 1, 2 and 1,
respectively, and the graphical representation of the polygon is

The points (mi + --- + mj,miA; + --- + m;\;) are called the break points of the polygon.
(Indicated in the figure by dots.) By definition, the polygon starts at (0,0), and it ends at the
point (n, 3 r;) = (3o my, 3o m;A;).

Note that, because we order the slopes in increasing order, the region of points (x,y) €
[0,n] x R lying above the polygon is convex.

HodgePol (15.16) Let (M, F') be a 0% F-crystal of height h over k. Note that both M and F(M) are
W-lattices in Mg. By the theory of modules over a principal ideal domain (see e.g. Bourbaki [1],
Chap. 7, § 4, Prop. 4, or Curtis and Reiner [1], § 16) there exist ordered W-bases {e1,...,ex}
and {f1,..., fn} for M, together with integers r < 79 < -+ < 1, such that F(e;) = p™ - f; for
all . The sequence of integers r; does not depend on the chosen bases. The polygon defined
by this sequence is called the Hodge polygon of (M, F'). We shall denote the Hodge slopes of
(M, F) by p1 < pg < -+ < uy; if necessary we write p; (M) or p; (M, F).

Note that, by construction, all slopes of the Hodge polygon are integers; in particular also
the break points of the polygon have integral coordinates. The smallest Hodge slope, ui; = 71,
is the largest integer r such that p” - M contains F'(M), and we recognize this as the integer
ord(F’) defined previously. The largest Hodge slope, 4, is the smallest integer s such that p*- M
is contained in F'(M).

Let h; = hi(M, F') be the multiplicity of i € Z as Hodge slope. The numbers h; are called

the Hodge numbers of the crystal (M, F). See Example () below for the relation with the
classically defined Hodge numbers of a variety.

The Hodge polygon can also be expressed in terms of the orders of the exterior powers
of F. For this we just have to remark that ord(A‘F), which is the smallest Hodge slope of
(N'M,A'F), equals 71 + 1o + - -+ + ;. So the Hodge polygon is obtained by starting at (0,0),
plotting the points (i, ord(A'F )) for 1 < i < h, and joining consecutive points by line segments.
In particular, the end point of the Hodge polygon of (M, F') is the point (h, orddet(F)).

HodgePolExa (15.17) Example. Consider the F-crystal (M, F') over k corresponding to the W[F]-module
WIF]/WIF]-(p?+pF +pF? — F3), where W[F] := W[F;o]. In other words, M is free of rank 3
as a W-module, and Frobenius is given on a basis {e1, e, e3} (corresponding to the classes of 1,
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F and F? respectively) by cry

Fles)=p*-e1+p-ea+p-e;.

Then {e1,e2,€5 :=e3 —p-e1 —p- ez} and {es, e3,e1} are ordered W-bases for M and F is in
diagonal form for these bases:

F(el) = €2

F(eg) — €3

F(ey) =p*-e;.
Hence the Hodge slopes of (M, F') are 0 with multiplicity 2 and 2 with multiplicity 1.

If we take M’ C Mg the W-lattice generated by €1 := p- e, €2 := €5 and €3 := e3 then we

have
F(e1)=p-e

F(eg) =e3
F(ez)=p-e1+p-ea+p-e3.

In this case we find, by passing to the basis {1, 2,63 — p?c1 — pea}, that the Hodge slopes are
0 with multiplicity 1 and 1 with multiplicity 2.

HP(M) HP(M')
So although (M, F) and (M’, F) are isogenous, their Hodge polygons are different.

HodgePolBT (15.18) Example. Let G be a p-divisible group over a perfect field k of characteristic p. We
define the Hodge polygon of G to be the Hodge polygon of its Dieudonné module. The only
slopes that can occur are 0 and 1, say with multiplicities hy and hy. We have hg + hy = h, the
height of G, and hy = dim(G), the dimension of G as defined in ??. In particular, the Hodge
polygon of an abelian variety X of dimension g is the polygon

(29,9)

(0,0 (9,0)

with g times slope 0 and g times slope 1.

HiCrysExa (15.19) Example. Let X be a proper smooth k-scheme. Crystalline cohomology theory (see
e.g. Berthelot [1], Berthelot and Ogus [1], as well as the reports by Illusie [1], [2], [3], [4]) gives
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us finitely generated W-modules H  (X/W) with all the usual functorialities. The relative

crys ; )
Frobenius Fy,: X — X® induces W-linear maps F*: ngys(X(p)/W) — He o (X/W).

If X is an abelian variety over k then the F-crystal obtained in this way from H.,  (X/W)
can be identified with the Dieudonné module of (the p-divisible group of) X as defined in ?77.

See 77.

We now start investigating the p-adic order of the iterates of F'. We start with an elementary
lemma.

(15.20) Lemma. Let k be a perfect field of characteristic p.
(i) Let (M, F) be a 0*-F-crystal of height h over k. Then for all n € N we have

ord(F) < ordsz”) < ordd}ebt(F) ' (1)

(ii) Let (N, F) be a o®-F-isocrystal over k. For any W-lattice M C N the limit

lim ord(F,)

n— 00 n

(2)

exists, and this limit is independent of the choice of the lattice M.

Proof. (i) Let r = ord(F"). Then F(M) C p"- M, and by induction on n this gives that (M) C
p""™ - M. Hence ord(F"™) > rn, which is the first inequality in (1). For the second inequality we
note that det(F™) = det(F)™; hence orddet(F™) = n - orddet(F). (Cf. Exercise (15.1).) So it
suffices to show that for any o®-F-crystal (A, ¢) of height h we have h - ord(¢) < orddet(p); we
then apply this with ¢ = F™. But if ord(¢) = r then ¢(A) C p" - A. This readily implies that
det (i) (det(A)) C p"" - det(A); so indeed orddet(y) = hr.

(ii) Fix a lattice M C N, and write Fis := Fjp;. It follows from (i) that for any m € N the
limit A(m) := lim,, . ord(FJ}")/m™ exists. Fix m. Given ¢ > 0, choose an integer v > 0 such
that ord(FJ2")/m" > X(m) —¢/2. If a € N, write a = ¢ - m” 4+ 7 with 0 < r < m”. Tt follows
directly from the definitions that ord(FY ) > ord(F%,) + ord(F§,) for all b, ¢ € N. Using this

we find 5
ord(Fy;) = q-ord(Fyp )+ r-ord(Fa)

>a- (Am) - %) + 7+ (ord(Far) = (A(m) — %))
>a. ()\(m) . %) —m” - |ord(Far) — (A(m) — g)‘ .

Hence there exists an A > 0 such that ord(F§;)/a > A(m) — ¢ for all @ > A. In particular, it
follows that A(m) is independent of m. Further, if we have ord(F{;)/a > A(m) for some a then
it follows from (i) that A(a) > A(m), contradicting the conclusion just obtained. Hence indeed
A(m) = lim,_,o ord(F§;)/a.

Next we want to show that the limit in (2) is independent of the chosen lattice. Suppose we
have W-lattices M; and M. Write F; := Fjyy,. Choose integers ¢ and d such that p©- M; C Mo
and p?- My C M. We claim that |ord(F}) —ord(Fy)| < ¢+d. Applying this to the iterates of F
(which does not change ¢ and d), this claim implies that the limit in (2) is independent of M.
By symmetry it suffices to show that ord(Fy) > ord(Fy) — ¢ — d. But this is clear, because if
ord(Fy) = r then

F(MQ) C p—d . F(Ml) C p—d+7‘ X ]\41 C p—c—d+r . MQ,
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so indeed ord(Fy) > —c—d + r. O

(15.21) Definition. Let (NN, F') be a 0% F-isocrystal over k. Then we define the first Newton
slope of (N, F'), notation A; = A\ (V, F'), to be the number lim,,_,, ord(F};)/n, where M C N
is any W-lattice.

As we shall prove in Proposition (15.25), the first Newton slope is actually a rational number.

After some preparations we shall define, in (15.31), the Newton polygon of an isocrystal.
The first Newton slope as defined here shall appear as the smallest of the Newton slopes; this
explains the terminology, which otherwise at this point might seem a bit strange. For a o®-F'-
crystal (M, F') we let A\ (M, F') := A\ (Mg, F).

(15.22) Remark. Let (M, F) be a o%F-crystal of height h. By (1) we have ord(F) <
A (M, F) < orddet(F')/h. Now ord(F) is just the first Hodge slope of (M, F'), which we usually
denote by 1 = p1 (M, F). Using this notation we have

orddet(F")

pr(M,F) < M\ (M, F) < .

Note that for h = 1 this says that pi (M, F) = X\ (M, F).

(15.23) Lemma. Let (N,F) be a o*-F-isocrystal over k. Then we have A\{(N,p™F"™) =
n-A(N,F)+m for all m, n € Z.

Proof. The relation A\{(N,F™) = n - A (N, F) readily follows from the definition of the first
Newton slope. The relation A (N, p™F') = A\ (N, F')+m follows from the relation ord(p™" Fy,) =
ord(Fyf;) + mn. By combining these two cases we obtain the lemma. U

(15.24) Lemma. Let (N, F) be a o®-F-isocrystal of height h over k.
(i) If there exists a W-lattice M C N such that F"*1(M) C p=!- M then (N, F) is effective.
(ii) Let r and s be integers with s > 0 and A\ (N, F) > r/s. Then there exists a W-lattice
M C N with F*(M) C p"M.

Proof. (i) Let M' := M + F(M) + F?(M) +--- + F"(M), which is again a W-lattice in N. We
have

h+1 2h+1 h+1
Y FI(M)=> FI(M)=M+> F(F*' (M) cp ' -M.
j=0 j=0 j=0

Now consider the ascending chain

h+1
M CM+FM)C---CY FI(M)Cp - M.
7=0

As p~IM'/M’ is a k-vector space of dimension h, there exists an index n € {0,1,...,h} with
Yo FI(M') = Z;l:& FI(M'). Then M" := 377 _ FI(M') is a lattice with FF(M") € M", so
(N, F) is effective.

(ii) Let F := p'~r(m+1) ps(h+1) By Lemma (15.23) we have A\ (N, F') = s(h+1)A1 (N, F)+
1—r(h+1) > 1. Hence there exists a W-lattice M C N and an n € N such that (F')" (M) C M.
Let M' := M + F'(M) + (F')2(M) + --- + (F")"~!. Clearly F'(M’') C M’, which can be
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rewritten as (p~"F*)"+1(M’) C p~!' - M’. Hence by (i) there exists a lattice M” C N with
p—TFs(M//) g M”. |:|

We are now ready to prove that the first Newton slope is a rational number, and that, for
a suitable choice of a lattice, the limit value A\; = lim,,_,o, ord(F};)/n is already attained for a
finite n.

(15.25) Proposition. Let (N, F') be a 0%-F-isocrystal of height h over k. Let d := orddet(F).
Then there exist integers v and s with 0 < s < h and r < d and a W-lattice M C N such that
A(N,F) =r/s and ord(Fy;) = r. In particular, Ay € Qgq/p-

Proof. We begin by choosing integers r and s with 1 < s < h and [\ — (r/s)| < 1/s(h + 1);
see Exercise (15.2) for the existence of such r and s. Let F/ := p~"F*®. By Lemma (15.23)
we have |\ (N, F")| = [sA\(N,F) —r| < 1/(h+1). By (ii) of Lemma (15.24) the inequality
AM(F') = —1/(h+1) implies that there exists a W-lattice M’ C N with (F")"*!(M') Cp~'-M'.
Then part (i) of the lemma tells us that there also exists a W-lattice M C N with F'(M) C M,
so in particular A\;(F’) > 0. Precisely the same argument applies to F"' := (F')~!; this gives
that A1 (F') = =X (F"”) < 0. Hence A\ (F’) = 0, and because by the first inequality in (1) we
have 0 < ord(F},) < A1 (F’) it also follows that ord(F},) = 0. Translating back to the original F,
again using Lemma (15.23), we find that A\ (F') = r/s and ord(F};) = r. In particular \; € Q,
and because A\; < d/h and 1 < s < h we must have r < d. O

(15.26) Corollary. Situation as in (15.25). If there exists integers r and s > 0 and a lattice
M C N with F¥(M) = p" - M then \;(N,F) =r/s = d/h and F"(M) = p? - M. Conversely, if
A1 (N, F) = d/h then there exists a lattice M C N such that F*"(M) = p® . M.

Proof. If F$(M) = p" - M then it follows directly from the definition that A\ (N, F) = r/s.
Further we then have

rh=x(M:p"-M)=x(M:F*(M))=s-x(M:F(M)) =sd,

where we recall that x(M : F(M)) = orddet(Fa). (See also Exercise (15.1).) Conversely, if
A1 (N, F) = d/h then by (ii) of Lemma (15.24) there exists a W-lattice M with F*(M) C p¢- M.
But

x(p*™M : F*(M)) = x(M : F"(M)) — x(M : p"M) =h-x(M : F(M)) —dh =0
so indeed F"(M) = p®- M. O

(15.27) Definition. Let (N, F') be a 0%-F-isocrystal of height h over k, and let d := orddet(F).
Then (N, F) is said to be isoclinic, of slope d/h, if A\;(N, F') = d/h, or, equivalently, if there exist
integers r and s > 0 (necessarily with /s = d/h) and a lattice M C N such that F*(M) = p"-M.

As we shall discuss in () below, if (IV, F') is isoclinic and M C N is a lattice with F'*(M) =
p" - M then the Hodge polygon of (M, F') coincides with its Newton polygon, and this polygon
has only one slope, viz. d/h.

(15.28) Proposition. Let k be a perfect field of characteristic p.
(i) If (N, F) is an isoclinic o®-F-isocrystal over k then any sub-isocrystal and quotient-
isocrystal of (N, F') is isoclinic too, of the same slope.
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(ii) If (N1, Fy) and (Na, Fy) are isoclinic o®-F-isocrystals over k of different slopes then
Homga-p-isoc (N1, F1), (Na, F)) = 0.

(iii) Given a o®-F-isocrystal (N, F') over k and a slope A € Q, there exists a unique maximal
sub-isocrystal of (N, F') that is isoclinic of slope \.

Proof. (i) Let M C N be a W-lattice with F*(M) = p. M. If N' C N is an F-stable
subspace, let M’ := N’ N M, which is a W-lattice in N’. Then F*(M') = FI'(N' N M) =
N'NF"M)=Nnp* M =p* (N'NM) =p* M, so indeed (N, F|y+) is again isoclinic
of slope d/h. Similarly, if g: N — N” is a quotient then M" := q(M) is a lattice in N” and
F'MM") = F"(q(M)) = q(F"(M)) = q(p® - M) = p* - q(M) = p® - M". The assertions in (ii)
and (iii) readily follow from (i). O

(15.29) Example. Let A € Q, and write A = d/h with h > 0 and ged(d, h) = 1. Define, for
a € Z\ {0}, a 0*-F-crystal .#\ over k by taking .4y :=W -e1 @ ---@® W - e, with

N _ ) €t if 1 <i<h;
F(e’)_{pd-el ifi=h.

In terms of (left) modules over the ring W[F] = W[F;0%] we can also say that we take .Z) :=
WI[F]/W[F]-(F" —p%). Tt is clear that F" = p? on .4\, so .#) is isoclinic of slope \. It follows
from (i) of the proposition that the corresponding isocrystal A4y := L @y .#) is simple, because
if A" C A4 is a subobject, say of height A’ and with orddet(F) 4+) = d’, then d’'/h’ = d/h,
which by the assumption that ged(d,h) = 1 is possible only if b’ = h, so A7 = A;.

If there is a risk of confusion we shall use the notation </V/\(a) to indicate the exponent a.

Using the description A3 = L[F]/L[F] - (F" — p?) with L[F] = L[F;0%] it is not hard to
calculate the endomorphism algebra of .43. We shall first do this under the assumption that k
contains a field with p®" elements.

An endomorphism o € Endge-p-jsoc /k(</1/>\) is completely determined by «(1), and this
should be a class representable by a polynomial f = co+ciF+---+cp_ 1 F' 1 with (Fh—p)-f €
L[F] - (F" —p?). But (F" — p?) - f is the class represented by

(Jah(c()) — co)pd + (U“h(cl) — cl)pd F+- 4 (U“h(ch_l) — ch_l)pd CFhL

so as a necessary and sufficient condition for f to give an endomorphism we find that %" (c;) = ¢;
for all i € {0,1,...,h;}. Note that if a is the endomorphism sending 1 to f and f3 is the
endomorphism sending 1 to g, then Soa sends 1 to the class of fg. The fixed field of ¢®* in L
can be identified with Qpan, the fraction field of W (F,an). (Here we use the assumption that
k 2 Fpan.) Then the conclusion is that

opp

]'Enda‘l-F—lsoc/,c (f/’//\) = (Qpah[F; Ua]/(Fh - pd)>

Note that F" —p? lies in the centre of Qpan[F;07], s0 it generates a 2-sided ideal. One recognizes
Qpan [F; 0%/ (F" —p?) as the cyclic algebra (Qpan /Qpa, 0, p?), which is the division algebra with
centre Qp« and invariant A = d/h in the Brauer group Br(Q«); cf. Appendix A, especially (A.5)
and (A.6). Hence Endya-p-jsoc e («43) is the central simple algebra over Q,« with Brauer invariant
—d/h. Note that in this case we know that the endomorphism algebra is a division algebra (and
not just a simple algebra) because .4} is simple.

The situation is a little more subtle if we work over a field k that does not contain Fjax.
For instance, suppose a = 1. Let kg C k, the algebraic part of the extension IF, C k, be the
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largest subfield of k& that is finite. Let p™ be the cardinality of ko and let A’ := ged(h,m).
The fixed field of ¢" in L can be identified with Q,», and the above calculation now gives that
Endga-p-isoc), (-#3) is the opposite of the algebra Q u [F]; o]/(F" — p?). The latter is the cyclic
algebra (Q,n /Qyp, o, p?), which is the division algebra with centre Q, and Brauer invariant d/h’.
For the general case see Exercise (15.3).

(15.30) Theorem. (Slope decomposition) Let (N, F') be a o®-F-isocrystal over a perfect field k
of characteristic p. For A € Q let (N, F) be the maximal sub-isocrystal that is isoclinic of
slope X. Then we have a decomposition of c®-F-isocrystals (N, F) = @xeq (Nx, F).

The decomposition thus obtained is referred to as the slope decomposition of (N, F'). Note
that this is a theorem about isocrystals, i.e., crystals up to isogeny. If (M, F) is a 0% F-crystal
and if we write IV := Mg then My := M N Ny is a W-lattice in Ny and (M), F') is a sub-crystal
of (M, F). However, in general the inclusion @ eqMy — M is not an isomorphism, only an
isogeny. Under some further assumptions it is sometimes possible to obtain a decomposition at
the level of the crystal; see for instance Katz [2], Thm. 1.6.1 on “Newton-Hodge decompositions”.

Proof. Write \i(N,F) = r/s. Consider the isocrystal (N',F’) := (N,p~"F?®), which by
Lemma (15.23) has first Newton slope A1 (N’) = 0. Suppose we know the theorem for (N', F'); so
we have a slope decomposition N’ = @,coN,,. By (ii) of Proposition (15.28) the endomorphism
F € Endga-p-isoc ((N’,F’)) respects this slope decomposition, so (N, F) is a sub-isocrystal
of (N, F). Writing v = a/b there exists a W-lattice M C N}, with (F')?(M) = p®- M. Hence
F% (M) = ptr®. M, so (N}, F) is isoclinic of slope (a+rb)/sb = (v+7)/s. If we set Ny := N/,
then N = @ cqNy is the desired slope decomposition of N.

In the rest of the proof we may assume that A\ (N, F') = 0. Using induction on the height
of (N, F) we are done if we can show that there is a decomposition of isocrystals (N, F) =
(Ngt, F) @ (N', F) with (Ne, F') isoclinic of slope 0 and A (N', F) > 0.

By (ii) of Lemma (15.24) there exists a W-lattice M C N such that F(M) C M. (Le.,
(N, F) is effective.) For each n € N we have that M /p™ M is a module of finite length over the
ring W[F;o0?]. Put

(M/p"M)g := N1 Im(F*)  and  (M/p"M)" := U;>; Ker(F").
Then (M /p™M)e and (M /p™ M) are stable under F', and we have a Fitting Decomposition
M/p"M = (M/p"M)s & (M/p"M)';

see e.g. Lam [1], Thm (19.16). It follows that (M /p™M ) is the largest submodule of M /p™ M
on which F' is bijective.

Let m: M/p" ™M — M /p™M be the canonical map. It is clear that m maps (M /p" 1 M)
to (M/p"M)e and (M/p"T*M)" to (M/p"M)’. Hence by passing to the limit we obtain a
decomposition

M =lm Af/p" M = Mg @ M’ with My := U (M/p"M)s  and M’ :=lm (Ar/pm M) .

By construction this gives a decomposition of o®-F-crystals (M, F) = (Mg, F)®(M’, F) with F
bijective on Mg, so (Mg, F') is isoclinic of slope 0. Further, for r sufficiently big we have F" = 0
on (M/pM)’, as M/pM has finite length. This means that F"(M’) C pM’, so A (Mg, F') > 0.
Hence by passing to isocrystals we obtain the desired decomposition of (N, F). O
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NPDef (15.31) Definition. Let (N, F) be a 0% F-isocrystal over k. Consider its slope decoposition New
(N,F) = @®xeq (Na, F). We define the Newton polygon of (N, F') to be the polygon whose New
slopes are the numbers A € Q with Ny # 0, and where we take each A with multiplicity my
equal to the height of (Ny, F) (i.e, the L-dimension of Ny).

If (M, F) is a 0®F-crystal then we define its Newton polygon to be the Newton polygon of
the associated isocrystal (Mg, F').

By its very definition, the Newton polygon is an isogeny invariant. There are subtle relations
between the Hodge polygon and the Newton polygon of a crystal; we shall further investigate
these in 7?7 below. The Newton polygon is invariant under extension of the base field.

We refer to the slopes in the Newton polygon of an isocrystal simply as the Newton slopes
and we denote by my = mx(N, F') € Z>( the multiplicity of A as a slope in the Newton polygon
of (N, F).

Observe that the breakpoints of the Newton polygon are integral, i.e., lie in Z2. Indeed,
if (N, F') is isoclinic of slope A and height h then we have seen in Corollary (15.26) that h\ =
orddet(F') € Z. So each isoclinic piece contributes to the Newton polygon a segment of integral
horizontal length (the height) and integral vertical length (the p-adic order of det(F)).

Intuitively, the Newton slopes are the valuations of the eigenvalues of F'. Note that, because
the map F: N — N is g%linear, there is no well-defined notion of an eigenvalue. In order to
make precise in what way we can still talk about the valuations of the eigenvalues, we consider
a purely ramified extension L C L' = L [\/]3] where the ramification index e is chosen such that
e); € Z for all Newton slopes \;. We extend o to an automorphism of L’ by the requirement
that a({/f)) = /p- Then we can find a basis of L' ® N on which the matrix of ¢* ® F" is upper
triangular of the form

p * * * * * * ok ok *
* * * * * ok ok *
p)‘1 * * * ko ok ok *
p’\2 * * ko ok ok *
* k% ok *
p)‘2 * ok ok %
* % *
0 * ok
*
p

with pti = (\/1_)) A See Exercise (15.4). So in this sense the Newton slopes may indeed be

thought of as the valuations of the eigenvalues of F'. Some care has to be taken here, though.
If we simple choose any basis for N, let ® be the matrix of F' with respect to this basis, and
then calculate the eigenvalues of ® in some algebraic closure L of L, then it is not true, in
general, that the valuations of these eigenvalues give the correct Newton slopes. See however
Theorem (15.35) below, where we obtain a positive result in this direction for isocrystals over a
finite field.

Our next goal is to prove an important theorem of Dieudonné [1] that gives a complete and
explicit classification of isocrystals over an algebraically closed field. As explained earlier, the
advantage of working with general - F-isocrystals is that we can easily reduce the proof to a
problem about isocrystals of slope 0. In that case everything boils down to a concrete statement
in semilinear algebra, which we now prove first.
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DThmLemma (15.32) Lemma. Let k be an algebraically closed field of characteristic p. Let v € Z\ {0}, and
write F C k for the unique subfield with p!*! elements.

(i) Let V' be a finite dimensional k-vector space, and let : V. — V be a bijective Froby -
linear map. Further let Vy := {v eV ‘ p(v) = v}, which is an F-subspace of V.. Then the
natural map k ®p Vy — V is an isomorphism.

(ii) Let M be a free W (k)-module of finite rank, and let F': M — M be a bijective o¥-linear
map. Further let My := {m € M | F(m) = m}, which is a W (F)-submodule of M. Then the
natural map W (k) ®@w @) Mo — M is an isomorphism.

Proof. (i) We assume that V' # 0; otherwise there is nothing to prove. Further we can assume
that v > 0, as the assertion about (V, ) follows from the statement for (V,¢~1). We begin by
showing that Vg #£ 0. Start with any 0 # v € V. Let n be the largest positive integer such that
the vectors v, p(v),...,¢"(v) are linearly independent. Then there is a relation

" (V) = cp @™ (V) + eno19™ W) + -+ crp(v) + cou.

For 0 <i<n,letd; :=c;+cd_+-- -+cf". By direct calculation one finds that w := S o dig(v)
satisfies p(w) = w. Further, as the coefficients ¢; are not all zero, the same is true for the
coefficients d;, so w is a nonzero element in V.

The natural map k ®r Vg — V is injective. Write kVy for the image. If kVy € V then
V := V/kV, is a nonzero k-vector space, on which we have an induced map . Applying what
we have just proved to the pair (V,%), there is a nonzero w € V with p(w) = w. We are done
if we can show that w can be lifted to an element v € V' with ¢(v) = v. Start with any v € V/
lifting w. Then x := p(v) —v € kVp. For any y € kV} the element v/ = v 4 y is again a lifting

of w, and p(v') — v = ) —v+py) —y = x + p(y) — y. So it suffices to show that the

map kVy — kVp given by y — ¢(y) — y is surjective. But this is clear, for if e1,..., e, is an
F-basis of Vg then kVy = ke 4 - - - + ke,., with ¢ given by (y1,...,yr) — (45 ,...,9 ). So if
z = (z1,...,2,) then we have to solve the equations y! — y; +z; = 0, and this can be done

because v > 0 and k = k.

(ii) As in the proof of (i) we may assume that v > 0. Let W := W (k), and let 7 :=¢”. As
the map W &y r) Mo — M is injective, we are done if we can show that My spans M over W.

Write V' := M/pM, and let ¢: V' — V be the map induced by F. Let ¢ = {e1,...,¢e,}
be a W-basis for M such that the elements e; mod p form a k-basis for Vj; this is possible
by (i). Let ® be the matrix of F with respect to the basis €. By construction ® = id mod p.
If A = (a;;) is a matrix in GL, (W) then the matrix of F' with respect to the basis Ae is
A~'® TA; here "A = (7(a;;)). By induction on n we construct matrices A, € GL,(W) such
that A, 11 mod p" = A, mod p" and A, '® "A, = id mod p". For n = 1 we can take A; = id.
Suppose we have already found A;, ..., A,, with the desired properties. Let ¥ = (¢;;) € M, (W)
be the matrix with A;1® 74, =id + p" - ¥. Because k = k there exist elements bi; € W such
that their reductions b;; modulo p satisfy Bf; —bij + Eij =0. Set Apy1:= A, - (id+ p"B) with
B = (b;j). Note that A, is again invertible because det(A, 1) = det(A,) mod p"™ and n > 1.
Also note that A;}H = (id — p"B) - A;! mod p"*!. Hence calculating modulo p"*! we find

AL ® "Apey = (id — p"B)(id + p"¥)(id + p" - "B) =id +p" - (V + "B — B),

and by our choice of the matrix B the term (¥ 4+ "B — B) vanishes modulo p. So we can take
Apn+1 as the next term in the sequence.

Finally let Ao, € GL,.(W) be the limit of the sequence (A,,), where we note that this limit
is again invertible because det(As,) = det(A4;) = 1 mod p. By construction, the matrix of F'
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on the basis Ay - € is the identity matrix. So M has a W-basis contained in My and we are
done. 0

(15.33) Theorem. (Dieudonné) Let k = k be an algebraically closed field of characteristic p,
and let a € Z \ {0}. Then the category o®-F-lsoc;, is semisimple. The simple objects are the
isocrystals A5, for A € Q, defined in Example (15.29). If (N, F) is any o®-F-isocrystal over k
then we have

(N F) =@ 4T
AEQ

PN
)
)

where h(\) = dimp,(.4)) is the height of A3, and where my = dimp(Ny) € Zx¢ is the multi-
plicity of A\ as a Newton slope of (N, F).

Proof. We already know that the isocrystals .4} are simple, so it suffices to show that every
o F-isocrystal (N, F') is isomorphic to a direct sum of objects .#5. By Theorem (15.30) it
suffices to prove this under the additional assumption that (N, F') is isoclinic, of slope A.

Write A = d/h with h > 0 and ged(d,h) = 1, and write 43 = L[F;0%]/(F" — p%). (So
h = h(\) is the height of .43, not of (N, F).) Write H := Homge-p-isoc,, (43, (N, F)). We
have an isomorphism H — N; := {n eEN ‘ F'(n) = p?. n} by sending f to f(1). This is an
isomorphism of left modules over the ring

B = Qen[F;0°]/(F" — p*) = Endge_puisoc, (43) PP,

which, as we have seen in Example (15.29), is the division algebra with centre Q,« and Brauer
invariant d/h.

The main point of the proof is that the B-dimension of Ny equals my/h, with my, =
dimp, (), the height of (N, F'). As B has dimension h over its subfield Q,.» this is equivalent to
the assertion that dimg ,, (No) = dim (N). To see this, consider F” := p~%- F" Then (N, F")
is an isoclinic o*"- F-isocrystal of slope 0, so there exists a W-lattice M C N with F'(M) = M.
Now My := No N M is a W(Fan)-lattice in Ny, and by (ii) of Lemma (15.32) the rank of My
over W (IF,an) equals ranky (M) = dimz (V). So indeed dimp(Ny) = my/h.

To conclude the argument, write ¢ := my/h and choose a B-basis e1, ..., e; for H =2 Ny. We
claim that the map p: %" — (N, F) given by (y1,...,y:) = e1(y1) + - + e:(y;) is injective.
By what we have shown, .#;" and N have the same dimension, so the claim implies that p is an
isomorphism, which is what we want to prove.

We view p as a homomorphism of modules over the ring L[F'; 0®], which is artinian because
it has finite dimension over L. Suppose Ker(p) # 0. Choose a simple submodule 4”7 C Ker(p).
Because 4 is simple, the Jordan-Holder Theorem (see e.g. 77) implies that A4 = 4, as
L[F;0%-modules. Hence they are also isomorphic as ¢%-F-isocrystals, say by an isomorphism
v Ny = AT G A — A s the inclusion, the composition joy: A5 — A is given by a
t-tuple (by,...,b;) € B with b; # 0 for at least one index i. By construction, bjej + - - - bse; = 0.
This contradicts the assumption that the elements e; form a B-basis for H. Hence p is injective,
and this finishes the proof. O

(15.34) Remarks. (i) The statements in the theorem do not hold for a =0 !

(ii) Let k£ be an arbitrary perfect field of characteristic p. Let (N, F') be a 0% F-isocrystal
over k. In general there is no finite extension of k over which (N, F') becomes isomorphic to a
direct sum of objects 4. Further the category o F-lsoc/;, is in general not semisimple. For
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instance, consider the F-isocrystal (N, F') over [, with N = Qg and F' given on the standard
basis {e1,e2} by the matrix ({ ;). Then (N, F) is isoclinic of slope 0 (note that F' maps the
standard lattice Z2 bijectively to itself), and it is clear that (Qpe;, F) is a sub-isocrystal. Now
we extend scalars to a finite field F, with ¢ = p™, and we try to find a v € L = Qp,m such that
(L-(ve1+e2), F) is a complementary sub-isocrystal. The condition we find is that v = o(y) + 1.

In W(IF,) this has no solution, because by iteration we get
y=0M+1=0*)+2==0"(y)+m=7+m,

which leads to a contradiction. So (N, F) is not a semisimple object in F-lsoc,p, for any ¢, and
in particular it is not isomorphic to %@2. The equation 7 = o(y) + 1 does have a solution
in W(F,), but if we write a solution v as a Witt vector, v = (70,71, ..) then the coefficients
v; € F,, have unbounded degrees over F,,.

(15.35) Theorem. Let (N, F') be a o®-F-isocrystal of height h over a finite field F, with
q=p™. Let w := F™, which is an L-linear endomorphism of N, and let f = det(t-idy — ) be
its characteristic polynomial, which is a monic polynomial of degree h. Let {a,...,an} be the
multiset of roots of f in some fixed algebraic closure L C L. If ord: L" — Q is the valuation with
ord(p) = 1 then the slopes of the Newton polygon of (N, F') are the numbers ord(c;)/ord(q),
counted with their multiplicities.

Proof. Without loss of generalization we may assume that (N, F') is isoclinic, say of slope A = d/h.
We have to show that for all roots a of h we have h - ord(a) = d - ord(q). Write F’ := p~@F".
Then (N, F’) is isoclinic of slope 0 and ¢~%a” is a root of the characteristic polynomial of
7' = (F)™ = ¢~% . 7", On the other hand, because (N, F') is isoclinic of slope 0 there exists
a W(F,)-lattice M C N with F'(M) = M. Hence also 7'(M) = M, so all eigenvalues of n’
are units in O, as both 7" and (7/)~! are integral over W (F,). This gives the desired relation
—d - ord(q) + h - ord(a) = 0. O

We now combine the theorem with a classical method, called the Newton polygon method,
to determine the valuations of the roots of a polynomial over a p-adic field in terms of its
coefficients. See for instance Neukirch [1], Chap. II, § 6. This gives us the following efficient way
of calculating the Newton polygon of (IV, F') over F, once we know the characteristic polynomial
of m=F™.

(15.36) Corollary. Situation as in (15.35). Write the characteristic polynomial of m as f =
cpt 4+ en_1t" "1 + .-~ + 1t + co; in particular ¢, = 1. Then the Newton polygon of (N, F) is
obtained by taking the lower convex hull of the set of points (i, %&7)) fori=0,1,...,h with
ch—i # 0.

(15.37) Example. Suppose we work over ), and the characteristic polynomial of F' = 7 is
f=t2 "+ p"0 4 pt? +pt® + p?® 4+ pt0 + Pt + M+ T+ Pt + pC.
We draw in the plane the points (z', ord(clg_i)), where ¢; is the coefficient of ¢/, and, within the

region {(a:, y) € R? | 0<z < 12}, we take the lower convex hull of this set of points. Note that
we simply omit the point (5, ord(07)), as ¢y = 0; if we wanted to give meaning to this point it

- 263 —



would have to be (5, 00), which has no effect on the lower convex hull anyway.

Then the Newton polygon of (N, F) is the boundary of this region, discarding the vertical
halflines at = 0 and x = 12.

So the conclusion is that after extension of scalars to F,, our isocrystal (NN, F') is isomorphic to

Mo+ Mz + MT5 A Nogz + M.

FIsocFqRem (15.38) Remark. Let (N1, F7) and (Ng, F») be two F-isocrystals over a finite field Fy, with
qg=p". Let m; := F/", for i = 1, 2, be the associated linear automorphism of N;, and regard
N; as a module over Q,m [t] by letting ¢ act as m;. Then (N1, 1) and (g, F») are isomorphic as
F-isocrystals if and only if N7 and Ny are isomorphic as Q,m [t]-modules. For a proof, by purely
ring-theoretic methods, see Jacobson [1], Corollary to Thm. 33.

Newton>Hodge (15.39) Theorem. Let (M, F) be a o®-F-crystal of height h over k. Then the Newton polygon
of (M, F) lies on or above its Hodge polygon, and the two polygons have the same begin point,
namely (0,0), and end point, namely (h,orddet(F)).

Proof. We may assume that k = k. Let ry = (M, F) <re < --- <1y be the Hodge slopes and
s1=AM(M,F) < sy <--- < sp the Newton slopes. Let Hodge: [0, h] — R and Newton: [0, h] —
R be the functions whose graphs are the Hodge and Newton polygons, respectively. Both
functions are linear on intervals [¢,7 + 1], and by definition we have Hodge(i) = r1 +--- +1;
and Newton(i) = s; + --- + s;. As remarked in (15.16) we have Hodge(i) = pi(A*M,A'F),
the first Hodge slope of A’M. We claim that, similarly, we have Newton(i) = A;(A*M,A'F),
the first Newton slope of A‘M. To see this, let R be a common denominator for the Newton
slopes. By Theorem (15.33) there is an L-basis ey, ...,e, for Mg on which F is given by the

Rsi  From this our claim readily follows, using that

diagonal matrix with diagonal coefficients p
(N'F)E = AYFR), and using Lemma (15.23).
As remarked in (15.22) we have A\; > py for any o®-F-crystal. Applying this to the exterior

powers of (M, F) we find that Newton(i) > Hodge(i) for all i« € {0,1,...,h}, so indeed the
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Newton polygon is on or above the Hodge polygon. By definition both polygons start at (0,0). ord

Taking ¢ = h in the above, we find that the assertion that the polygons have the same end point sup
just means that p;(det M, det F') = \i(det M,det F), which is clear as det M has rank 1; cf.
Remark (15.22). O

§3. The Newton polygon of an abelian variety.

ordssbet (15.40) Definition. Let X be an abelian variety of dimension g over a field of characteristic
p > 0. Then X is said to be ordinary if its Newton polygon is given by 0919; this is equivalent
to the condition that f(X) = g. We say that X is supersinguar if its Newton polygon is given
by (1/2)%9.

In Figures 1 and 2 we give, for dimensions up to 4, the complete list of possible Newton
polygons. The arrows indicate which specializations are possible according to 77; as we shall
discuss in 77 these specializations all indeed occur. The dotted polygons are the Hodge polygons.
For g = 4 we also give the p-rank.

Exercises.

Ex:chiMFsM (15.1) Let (M, F') be a 0%-F-crystal over a perfect field k.
(i) Show that x(M : F(M)) = orddet(F).
(ii) Show that x (M : F*(M)) =s-x(M : F(M)) for all s > 1.

Ex:Approximate (15.2) Let A be a real number, and let h > 1 be an integer. Show that there exist integers r
and s with 1 < s < hand |A—(r/s)] < 1/s(h+1).

Ex:EndNlambda (15.3) Let A = d/h with h > 0 and gcd(d,h) = 1. Let a € Z\ {0}, let k be a perfect field of
characteristic p, and consider the o F-isocrystal .43 defined in Example (15.29). Let kg C k
be the largest subfield that is finite, and let p™ be its cardinality. Define 6 := gcd(a,m).
Show that Endge-p-jsoc /k(</1/>\) is the division algebra with centre Q,s and Brauer invariant

—d/[(a/0) - ged(h, m/0)].

Ex:Fuptriang (15.4) Consider a o%-F-isocrystal (N, F') over a perfect field k of characteristic p. Let L be the

fraction field of W (k) and let o be its Frobenius automorphism.
(i) If (IV, F) is isoclinic of slope 0, show that there exists a basis for N on which the matrix
of F is upper triangular with all diagonal coefficients equal to 1. [Hint: Look at the proof

of Lemma (15.32), part (i).]

(ii) For a general (N, F), let A\; < A2 < --- < A; be the Newton slopes, and let e be a common
denominator of the \;. (So e); € Z for all i; for instance one can take e = hl, where h is
the height). Consider the purely ramified extension L C L' := L[X]/(X¢ —p). Let u € L’
be the class of X;so “u = g/p”. For any A € Q with e\ € Z, write p* == u®. Extend o
to an automorphism of L’ by the requirement that o(u) = u. Show that there is a basis of
L' ®;, N on which the matrix of ¢® ® F is upper triangular with diagonal coefficients p*:.
[Hint: First reduce to the isoclinic case. If (N, F') is isoclinic of slope r/s, first apply (i)
to find a vector n € N with F¥(n) = p" - n. Now argue as in the proof of Lemma (15.32),
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Figure 1. Newton polygons and their specializations for ¢ = 1, 2 and 3.
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f=4-
ordinary
f=3—
f=2-
f=1—
M
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Figure 2. Newton polygons and their specializations for g = 4.
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Chapter XVI. Abelian Varieties over Finite Fields.

As the theme of this chapter is that of abelian varieties over a finite field k, it will come as no
surprise that the main character of this chapter is the geometric Frobenius morphism 7x of an
abelian variety X relative to k (which raises the coordinates of a point to the exponent #k).

The first goal is to understand the eigenvalues of the induced action by Frobenius on the Tate
modules of an abelian variety and on the p-visible group with p = char(k). Then we characterize
the homomorphisms between abelian varieties by the induced Galois module homomorphisms of
the corresponding Tate modules and we study the endomorphism algebras. After this we describe
which numbers occur as eigenvalues of Frobenius. We also deal with the question which rings
occur as endomorphism rings. We illustrate the result with the case of elliptic curves. We finish
with a description of the category of abelian varieties over a finite field using the canonical lift.

The finiteness of the ground field plays an important role in the following way. If we fix the
cardinality of the finite field k then it is a fundamental fact that the number of k-isomorphism
classes of g-dimensional abelian varieties with a polarization of degree d* defined over k is finite.
This follows from the fact that if \: X — X* denotes such a polarization of degree d? then 3\
defines an embedding of X into a fixed projective space of dimension 39d — 1 as a variety of
degree 39d(g!). A general theorem (cf. ?7?7) says that there exists a scheme (Chow scheme)
of finite type that parametrizes all varieties of fixed dimension g and fixed degree in projective
space. This scheme has only finitely many points over k. Alternatively, the existence of a moduli
space of abelian varieties with a given polarization implies the result.

§1. The eigenvalues of Frobenius.

(16.1) Let ¢ = p™ be a power of a prime number. As customary, F, denotes the field with ¢
elements. We fix an algebraic closure F, C Fq. For any n € Z~( we take Fy» to be the unique
subfield of Fq with ¢" elements.

For any scheme X over I, we have a morphism mx: X — X over F,, called the geometric
Frobenius of X, which is defined to be the identity on the underlying topological space and
is given by f — f% on (sections of) the structure sheaf Ox. In particular, on affine schemes
Spec(A) the geometric Frobenius corresponds to the endomorphism of A given by a +— a4. If
there is a need to indicate the ground field, we shall write 7y /r, instead of 7x.

As is clear from the definitions, for a finite extension F, C F,» the geometric Frobenius
of X ® Fyn over Fyn equals 7%, the nth power of mx. More formally, we have the relation
T(X®@Fyn)/Fgn = w%mq ® id as morphisms from X ® Fy» to itself.

We can also describe the geometric Frobenius as an “iterated relative Frobenius”. To be
precise, if ¢ = p™ then mx equals the composition
F

X(p'm,fl)/]Fq

Fx/r m
q 5 X(P ) ,

F F 2
X(:D)/Fq X(pQ) x(p )/Fq

X x (@)

where we note that X(?™) = X(@ = X, So in the notation of (5.21) we have mx = Fw,

AVFF, 8 februari, 2012 (635)
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If f: X — Y is any morphism of F-schemes then 7y o f = fomx. In particular, if F, C k&
is a field extension then wx acts on the set X (k) of k-valued points by sending x: Spec(k) — X
to mx ox, which equals the composition

TSpec(k)

Spec(k) Spec(k) - X .

More concretely, if we have an embedding X < PV over F, then 7y acts by raising all coordi-
nates to the gth power, i.e., Wx((a(] D aN)) =(ad:--:a%). AsFpn = {a eF, ! a?" = a},

it follows that X (F,») is the set of fixed points of 7% acting on X (F,); so

X (Fgn) = {z € X(F,) ‘ T (z) =z} .

(16.2) Let X be an abelian variety of dimension g over F,. As the origin of X is an F -rational
point, it is fixed under wx. Hence mx is an endomorphism of X as an abelian variety. The
description of wx as an iterated relative Frobenius, together with Proposition (5.15), shows that
mx is a purely inseparable isogeny of degree ¢9.

As mentioned above, for any morphism f: X — Y of schemes over F, we have foerx =
my o f. In particular, mx commutes with all endomorphisms of X, and lies therefore in the centre
of the endomorphism algebra End"(X).

We write fx = P, for the characteristic polynomial of mx. It is a monic polynomial of
degree 2g with coefficients in Z, and for any n € Z we have fx(n) = deg(n — mx). For any
prime number ¢ # p we know by Theorem (12.18) that fx is also the characteristic polynomial
of the induced endomorphism Ty(mx) of the Tate module T;X. We usually refer to fx as the
characteristic polynomial of Frobenius, with the understanding that the “Frobenius” in question
is the geometric Frobenius endomorphism.

(16.3) Proposition. Let X be an abelian variety over [F,.
(i) Let ¢ be a prime number, ¢ # p. Then Vy(mx) is a semisimple automorphism of V, X .
(ii) Assume X is elementary over F, (i.e., isogenous to a power of a simple abelian variety).
Then Q[rx] € End’(X) is a field, and fx is a power of the minimum polynomial fo™ of mx
over Q.

Proof. (i) As remarked above, mx lies in the centre of End’(X), which is a product of number
fields. Hence Q[rx] € End’(X) is a product of (number) fields, too. It follows that also
Q¢[rx] € Q; ® End’(X) is a product of fields; in particular Qg[rx] is a semisimple ring. Now
Ve X is a module of finite type over Qy[mx], with mx acting as the automorphism Vy(7x). Hence
Ve X is a semisimple Qy[mx]-module, and this means that V(7 x) is a semisimple automorphism.

(ii) If X is elementary then the centre of End’(X) is a field, so also Q[rx] is a field. Let
g = fg* be the minimum polynomial of 7y over Q. If a € Q, is an eigenvalue of V() then
g(c) is an eigenvalue of g(Vy(mx)) = Ve(g(rx)) = Ve(0) = 0; hence g(a) = 0. Note that these
eigenvalues (the roots of fx) are algebraic over QQ, as fx has rational coefficients. So every
root of f in Q is also a root of g, which just means that fx divides a power of g. Because g is
irreducible this implies that f is a power of g. O

(16.4) Theorem. Let X be an abelian variety of dimension g over F,.

(i) Every complex root a of fx has absolute value |o| = /q.

(ii) If v is a complex root of fx then so is & = q/«, and the two roots occur with the same
multiplicity. If & = /q or o = —,/q occurs as a root then it occurs with even multiplicity.
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Proof. (i) We first reduce to the case that X is simple (over ;). For this, choose an isogeny
h: X — X' = X1 x --- x X, where the factors X; are simple. Then h induces an isomorphism
Vi(h): Vi X = V, X' =V, X1 @ - @V, X,, and because homx = mx/oh the automorphism
Vi(h)oVo(mx)oVe(h)™! of VX1 @ --- @V, X, is the one given by

(€1, 8) = (Velmx,) (&), - Valmx, ) (€s)) -

Hence fx = fx, - fx. and we find that it suffices to prove the theorem for simple abelian
varieties.

Let A be any polarization of X, and let  denote the associated Rosati involution on
End®(X). We first show that mx -7k = ¢. Because 7y -mh = mx - A" -l - A = A Lomye -7l - A,
it suffices to show that 7xe - 74 = [g]x:. But 7x = F)’?/]Fq, so by Proposition (7.34) we have
T = V{i . and as in (5.21) it follows that mx« - 7% = Fi7y p - Vi e = [p™]xe = [q]x+.

Because X is simple, Q[rx] is a number field, and as fx is a power of the minimum
polynomial of mx over Q the complex roots of fx are precisely the complex numbers of the form
t(mx ) for some embedding ¢: Q[rx] — C. The relation WL — q/mx shows that Q[rx] C End’(X)
is stable under the Rosati involution, which by 7?7 is a positive involution. This leaves two
possible cases:

(a) Totally real case: Q[rx] is a totally real field and t is the identity on Q[nx].

(b) CM case: Q[rx]is a CM-field and for every complex embedding ¢: Q[rx]| — C we have

W(zh) = o(x), for all z € Q[rx].

In either case the relation my - 773( = ¢ implies that all complex roots « of fx have absolute

value |af = /q.

(ii) The first two assertions are trivial, because fx has real (even rational) coefficients. The
only non-trivial point is that /g and —,/q can only occur as root with even multiplicity, and
again it suffices to show this under the assumption that X is simple. Because a CM field has no
real embeddings, 4,/q can only occur as a root of fx in the totally real case, and in that case
they are the only possible roots, because of the relation aa = ¢. If | /g occurs with multiplicity n
then —,/q occurs with multiplicity 2g —n, so fx(0) = (=1)"¢?. But fx(0) = deg(—7nx) = ¢7,
so 1 is even. O

(16.5) Remarks. (i) An alternative argument showing that 7x - 7& = q is the following. Let
L := (id, \)* Zx, which is an ample bundle on X. By Proposition (11.1) we have ¢y = 2\, and
1 is also the polarization associated to . Hence 7T_1;( Tx = 4,0;1
that % - ¢ - mx = ¢r - q. Because L is a line bundle on X (over F,) we have 7% L = L4, as mx
sends the transition functions to their gth powers. (Caution: This only works for line bundles
on X itself, not for line bundles on X7 with 7" an arbitrary [F,-scheme.) For any z € X(T") we

then have

-l - - Tx, so we want to show

(- or-mx) (@) = [7% (@ L@ L7Y)]
[timx Lo ny L]
= [t;L7® L™ = pra(z) = ¢ pr(2),

which proves the desired relation.

(ii) Given a prime power g, let f € Z[t] be a monic polynomial of degree 2¢g such that all
complex roots have absolute value ,/q, and such that if 4-,/q is a root of f then it has even
multiplicity. It is not always the case that f occurs as the characteristic polynomial of Frobenius
of an abelian variety over F,. However, we shall see in 7?7 below that there is always some power
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of f that occurs as fx for some abelian variety X. Also we shall see there that the totally real
case is a very exceptional one.

(iii) The theorem implies that the characteristic polynomial of Frobenius satisfies the iden-
tity t29 - fx(q/t) = ¢ - fx(t). (To see this, note that fx can be written over R as a product
of quadratic factors of the form h = (¢t — a)(t — &) with aa = ¢; for such a factor we have
t2 - h(q/t) = q- h(t).) If we write

fx =t 4+ cog 11?97 ot ot + it + e

then this identity for fx just says that ¢; = ¢%97" - coy—;.

As we shall see later, the isogeny class of an abelian variety X over a finite field is completely
determined by the associated characteristic polynomial fx, and every algebraic integer 7 that
has absolute value ,/g under all embeddings Q[n] < C occurs, in a suitable sense, as Frobenius
of an abelian variety over IF,. See § 6 of this Chapter.

(16.6) If Y is a scheme of finite type over F, then for any positive integer n the number
N,, = #Y (Fy4n) of Fyn-rational points of Y is finite. The sequence of numbers NV, is conveniently
encoded in the zeta function of Y, defined by

Z(Y;t) :=exp <Z N, - %) € Q[t] .

n=1

For an alternative definition, let |Y|.; denote the set of closed points of Y, and for y € |Y|. let
deg(y) := [F4(y) : Fy]. Then Z(Y';t) can also be written as an infinite product:

Z(vity= [ (1—edes@),

ye‘Y|cl

(16.7) Theorem. Let X be an abelian variety of dimension g over F,. Let {1, ..., aq4} be the
multiset of complex roots of the characteristic polynomial fx, so that we have fx = H?il (t—ay).
If I is a subset of {1,...,2g}, define oy := [],c; .

(i) For any positive integer n we have

2g 2g
#X(Fyn) = H(l —al) = Z(—l)j -trace(m’y; ANV, X)),
i=1 §=0

where ¢ is any prime number different from p and where by trace(r%; A7V, X) we mean the trace
of the automorphism N V,(7%) of NV, X.
(ii) The zeta function of X is given by

29
_1)d PPy Poy
Z(x;t) = [[ PV = B 2l
(X:1) 1] PoDy P,
where P; € Z[t] is the polynomial given by
Pi= J] (—t-a)=det(id—t-mx;NV,X),
ICc{1,...,2g}
#I=j
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the reciprocal characteristic polynomial of NV,(mx).
(iii) The zeta function satisfies the functional equation Z(X; =) = Z(X;t).

’ q9t

Proof. (i) The characteristic polynomial P of 7' is equal to H Lt — o). By what was
explained in (16.1) the kernel of id — 7% in X (F,) is precisely X (F,n). As this is finite, id — 7%
is an isogeny. Because mx is purely inseparable it induces the zero map on the tangent space.
Hence id — 7'y induces the identity on the tangent space, so it is a separable isogeny. This
implies that #X (Fgn) = deg(id — 7%) = Pry (1) = [172,(1 — o).

The eigenvalues of A7V, (7% ) are the numbers a} where I runs over all subsets of {1,...,2¢g}
of cardinality j. The second identity in (i) therefore follows from the elementary relation

12‘g[<1—a2>=229(<—1>f- > af).
i=1 §j=0 IC{1,...,2g}

(ii) We use the general fact (see HAG, Appendix C, Lemma 4.1) that for an endomorphism ¢
of a finite dimensional vector space V over a field K we have an identity of formal power series

n
n=1

exp (Z trace(¢™; V) - t—) =det(id —t-p; V). (1)
Applying (i) then gives
oo 29

tn
Z(X;t) =exp ZZ 1)7 - trace(n%; AV, X) -
n
n=1 j=0

(=1 2g
t" . j+1
— H exp ( g trace(m'y; A WX) n) = H det(id —t-WX;NVgX)(_l) + .

7=0 n=1 7=0
The eigenvalues of A?V;(mx) are the numbers oy for I C {1,...,2¢g} of cardinality j, so
det(id —t-mx; NV X) = [ (1 —t-ar)=P.
Ic{1,...,2g}
#I=j

As Gal(Q/Q) naturally acts on the multiset {ar}rcqi,...29},41=; this polynomial has rational
coefficients. As furthermore P; is a monic and all its roots are algebraic integers we have
Pj € Z[t]

(iii) For any j € {0,...,2g} the eigenvalues of A2977V,(mx) are the numbers oy where K
runs over all subsets of {1,...,2¢} of cardinality 2g — j. Because Hfi 1 = ¢7, these are also the
numbers ¢7/a; where I runs over all subsets of {1,...,2g} of cardinality j. So

The number of subsets I C {1,...,2g} with #I = j equals the dimension of A7V, X, which is
(ng). Further,

- 273 —

Zet



WeilConj

29—1) _ g

2 .
as each a; occurs (j_l 5 (jg) times as a factor. Hence

Pogmy = (O -5 By ().

2 j —j 2g—1 j -
Because E o(=1)7tt (QJQ) = 0 and also 3% ((— 1)i+124-0. (ng) =930 (=17t (ng H=o,
taking the product over all j gives the relatlon

2g i+1
j 1 .\ (1) 1
||P( V=T (G)) = Z(X;—
29—j g ](qgt) ( ’qgt)7
which is the desired functional equation. ]

(16.8) Theorems (16.4) and (16.7) prove the Weil conjectures for abelian varieties, and in order
to put these results in their proper context it is worthwile to include a brief discussion of the
WEeil conjectures. As this is only intended to give some background material, the reader may
jump ahead to (16.12) without missing much.

In his 1949 paper Weil [4], André Weil formulated some beautiful conjectures about the
zeta functions of varieties over F,, which have had an enormous influence on the development
of abstract algebraic geometry. To state his conjectures, consider a smooth projective variety Y
over F, of dimension d. Let the zeta function Z(Y';t) be defined as in (16.6), and let x(Y") be the
topological Euler characteristic of Y, which can be defined for instance as the self-intersection
number of the diagonal Ay CY x Y.

Weil conjectured that the zeta function Z(Y';t) is a rational function for which there is an

expression
Py P3Py

Z(Y;t) =
( 7) POPQ"'PQd Y

where the P, are polynomials with integral coefficients that in C[t] can be written as P, =
H;’ L(t — ai;), with all roots a;; of P; algebraic integers of absolute value |a;;| = ¢/2. (These
properties uniquely determine the polynomials P;, if they exist.) Further Weil conjectured that

Z(Y;t) satisfies a functional equation

d- X(Y)

X)L Z(ve).

When Weil stated these conjectures, he could prove them for curves (Bijdrage FK Schmidt?),
and not long thereafter he gave a complete proof for abelian varieties. (Historisch correct?
Vergelijk met ons bewijs??). The rationality of the zeta function and the functional equation were
proved by Dwork in 1960, using p-adic analysis, and later again by Grothendieck as application
of the machinery of £-adic cohomology that he had developped in collaboration with M. Artin,
among others. The remaining assertion that all roots of P, are algebraic integers of absolute
value ¢/? is known as the Riemann Hypothesis for varieties over finite fields and turned out to
be much harder. It was proved by a beautiful combination of techniques by Deligne in 1973; see
Deligne [3]. We refer to HAG, Appendix C or Katz [1] for a further introduction to the Weil
conjectures and Deligne’s proof.

Weil himself already realised that his conjectures could be proven once one had a sufficiently
good cohomology theory, satisfying analogues of a number of properties that are known to hold
for singular cohomology of smooth projective varieties over C. See Kleiman [1] for a precise
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description of the mechanism one needs. The way one uses cohomology is as follows. (We shall
formulate everything using ¢-adic cohomology.)

As already explained in (16.1), #Y (Fyn) equals the number of fixed points of 73 in Y (F,).
Let I'), C Y—q X Y— be the graph of 7y. Because the tangent map of 7y is everywhere zero,
all intersections of F with the diagonal A C Yz X Y3 are transversal. Hence the number of
fixed points of 7y equals the intersection number r, A By the Lefschetz trace formula, this
intersection number also equals the alternating sum of traces of 7y acting on the cohomology
of YFq; so we find that

2d
#Y (Fgn) = Z(—l)i . trace(w?/, Hi(YFq,Qg)) .
i=0
Using the identity (1) we find that if we define polynomials P; by
I%:::detﬁd——t-ﬂygfwa%q#@eDa

we get the identity

2d
it PPy P
2(vit) = [[ POV = 2
¥39) o Py Pogq

The rationality of the zeta function now follows from the fact that Q[t] N Q(t) = Q(¢). The
functional equation for Z(Y'; t) follows by elementary arguments from Poincaré duality; see HAG,
Appendix C, Section 4. If d := dim(Y") is odd then the sign in the functional equation is +1, if
d is even the sign is (—1)", where N is the multiplicity of q%/? as an eigenvalue of 7y acting on
H d(YFq,Qg). Note that a priori the polynomials P; are in Q[t]; the fact that they are in Z[t] is

part of the Riemann Hypothesis. Further note that Py =1 —t and Pyy = 1 — q%

The proof of the Riemann Hypothesis requires deeper results than merely the existence of
a Weil cohomology theory. In the years before Deligne’s proof the general expectation was that
the Riemann Hypothesis should be obtained as a consequence of two further properties of ¢-adic
cohomology, namely the hard (or “strong”) Lefschetz Theorem and an analogue of the Hodge
Index Theorem. (These are part of Grothendieck’s “standard conjectures”.) This, however,
turned out not to be the easiest route. Deligne proved the hard Lefschetz Theorem using the
Riemann Hypothesis, whereas the Hodge Index Theorem in this setting is at present still an
open problem. See also Katz [1] and Messing [2].

Looking at our proofs of Theorems (16.4) and (16.7) we recognize that part of what we have
been doing fits nicely with the general approach sketched here, where we have the advantage
that we can do without any reference to ¢-adic cohomology, using the Tate module instead. (Cf.
Corollary (10.39). Note that the Tate module is the first homology, rather than cohomology.) For
example, the equality between the first and third term in (i) of Theorem (16.7) is just an instance
of the Lefschetz trace formula. But the most interesting part is the Riemann Hypothesis, and as
sketched above, for general varieties this is far from an automatic consequence of the existence of
a Weil cohomology theory. For abelian varieties, the proofs we have given ultimately boil down
to results about the structure of the endomorphism algebra, and in particular the positivity of
the Rosati involution. Note that for abelian varieties we do know that the Hodge Index Theorem
holds (see ?7?) but that we do not directly use it here. Morally speaking its role is taken over by
the positivity of the Rosati involution, which, like the Hodge Index Theorem, is a result about
the signature of a quadratic form.
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NPX/Fq (16.9) Let X be an abelian variety over a finite field F,. By () the characteristic polynomial

LefTraceCurve

of mx on the rational Dieudonné module Mg(X) equals fx. Theorem (15.35) and its Corol-

lary (15.36) give us a quick way to read off the Newton polygon of X from fx. To summarize,

if {@1,..., a9} is the multiset of roots of fx in Q then, with conventions as in ??, we have the

following information about the valuations of the ay:

(1) If v is a prime of K := Q(avy, ..., ag,) of residue characteristic £ # p then ord,(o;) = 0 for
all 4. This follows from the relation a;a; = ¢ since a; and &; are both integral.

(2) If v is a prime of K above p then the multiset {ord,(c)/ordy(q), ... ,ordy,(aoy)/ord,(q)}
is the (unordered) collection of slopes, counted with multiplicity, of the Newton polygon

of X. This is Theorem (15.35).

(3) If v is an infinite prime of K then ord,(a;)/ord,(q) = 1/2 for all . This is (i) of Theo-

rem (16.4).

By Remark (15.38), the action of mx on Mg(X) actually determines the F,-isogeny class of
the p-divisible group X [p*°]. This class carries finer information than just the Newton polygon,
which only depends on XF,n but this additional information is more difficult to exploit. We shall
come back to this in the proof of Corollary (16.30), where we determine the precise structure
of the endomorphism algebra of X in terms of mx. The hardest part in that calculation is to
determine the local invariants of the endomorphism algebra at the places above p, and by a
theorem of Tate (see Theorem (16.24)) this boils down to the calculation of Endpm (Mg(X)).

§2. The Hasse-Weil-Serre bound for curves.

Let C be a nonsingular complete curve over a finite field F,. The discussion in (16.8) tells us
what to expect for the zeta function of C'. Namely, we should have Z(C;t) = Py /(1 —t)(1 — qt)
where P; is the reciprocal characteristic polynomial of Frobenius acting on the H! of the curve.
Further, the Riemann Hypothesis should hold and Z(C;t) should satisfy a functional equation.
Keeping the cohomological interpretation of the Weil conjectures in mind, it should come as
no surprise that the proof of these assertions can be reduced to the Weil conjectures for the
Jacobian of C. In fact, as we shall see in (16.14) below, C always has F, -rational points,
and if we choose P € C(F,) then by ?? the map ¢p: C — Jac(C) induces an isomorphism
¢y H'(Jac(C)g ,Zy) — H*(C5 ,Z¢) on cohomology in degree 1, compatible with the actions
of the geometric Frobenii. So all the relevant information should be contained in the Tate module
of the Jacobian with its action of the geometric Frobenius. To turn this philosophy into a solid
theorem we first prove a special case of the Lefschetz trace formula, in terms of the Tate module
of the Jacobian.

(16.10) Proposition. Let C be a nonsingular complete curve over a finite field F,. Let
J = Jac(C) be its Jacobian, and let {aq,...,as,} be the complex roots of the polynomial f;.
Then for every positive integer n we have

29
#C(Fypn) =1—trace(n]) +¢" =1— Z ai +4q".
i=1
Proof. Tt suffices to prove this for n = 1, as the assertion for arbitrary n then follows by

considering C @ Fyn. As already explained in (16.8) we have #C(F,) = A¢-I', whereI' C Cx C
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is the graph of the geometric Frobenius 7m¢. To prove the identity Ag - T' = 1 — trace(mwy) + ¢ Wei
we may work over k := F,. Choose a point P € C(k) and let a: C — J be the map given on Has
points by @ — [Q — P]. [INOG AFMAKEN - bewijs v Gerard is niet goed]

(16.11) Theorem. Let C be a nonsingular complete curve of genus g over a finite field Fy,
and let J := Jac(C') be its Jacobian. Let {cu,...,as4} be the multiset of complex roots of the
characteristic polynomial f; of the geometric Frobenius of J. Let Py :=1—1t and P, :==1 — qt,
and let P, := ?il(l — a; - t) be the reciprocal of the polynomial f;. Then we have

o P
PPy (1=1)(1—qt)

Z(C5t)

All complex roots of the polynomial P; are algebraic integers of absolute value ¢'/?. Further,
Z(C;t) satisfies the functional equation

Z(Cit)y=¢" 1 - t797% . Z(C, %) :

Proof. The identity Z(C;t) = P1/PyPs readily follows from Proposition (16.10) together with
identity (1). The assertion about the roots of the polynomials P; is obvious for i = 0 and i = 2,
and for ¢ = 1 it is just (i) of Theorem (16.4). For the functional equation, note that by (ii) of
Theorem (16.4) there is an involution ¢ € &y, such that a,;) = @; = q/a; for all i. We then
have

2g 2g 2g 1
Pr=[J(ewy -t =1) =[Ja;-¢* J](1 - )
i=1 j=1 i=1 Qi)
2g a
= g9 . 129 1—- =2 9.¢29.p (=
oo 10 -5 ()
As PoPo =q-t- PO(%)PQ(%) we obtain the functional equation. O

We note that the zeta function of C' can also be written as
oo
Za(t) =) Dnt",
n=0

where D,, is the number of effective divisors of degree n on C that are defined over F,, see
Exercise 16.1.

By Proposition (16.10), to count the number of F,-rational points of C, it suffices to know
trace(my) = Efi | @;, which is minus the coefficient of ?~! in f;. Because all a; have absoulte
value /g we have the estimate |trace(r;)| < |2¢,/q] (the Hasse-Weil bound). Serre showed that
one can improve this a bit, as follows.

(16.12) Theorem. Let X be an abelian variety of dimension g over F,. Then trace(mx)
satisfies

[trace(mx)| < g - [2y/d) (2)

This is an equality if and only if either o; + & = [2,/q] for all i or a; + &; = —|2,/q] for all i.
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Proof. We number the complex roots of fx such that agy; = @; for i = 1,...,g. Write
a; = a; + &;. These are real numbers with |a;| < [2,/g] + 1. Hence the numbers b; :=
12,/q] + 1 + a; are positive algebraic integers. The Galois group Gal(Q/Q) naturally acts on

the multiset {bq,...,by}. It follows that the product b; - - - by is an element of Z~ . Now we use
the arithmetic-geometric mean inequality
by +---+b,

g > (b1 by)'9,

with equality if and only if all b; are equal. So [2\/q] +1+ > 7_,a;/g > 1, i.e., trace(rx) =
> 1ai > —g-[2,/q]. Repeating the same argument for —mx gives the estimate trace(mx) <
g-2y/q]. If we have equality in (2) then all a; are equal, and this readily gives the last
assertion. O

Applying this to the Jacobian Jac(C) gives the following bound on the number of rational
points on a curve.

(16.13) Corollary. (Hasse-Weil-Serre) Let C' be a complete nonsingular curve over F,. Then
for the number of F,-rational points of C' we have the inequalities

q+1—g[2yq] <#CF,) <qg+1+9[2Vq].

Note that in order to determine the g roots a; of fy.c(c) it suffices to calculate #C'(Fy:) for
i=1,...,9. We give some examples.

(16.14) Examples. (1) If C' is a complete nonsingular curve of genus g over F, then #C(F,) >
q+1-2/q= (\/5 — 1)2 > 0, so C has an F,-rational point.

In particular, a curve of genus 1 over I, always has an F,-rational point and, taking such
a point as the origin, can be given the structure of an elliptic curve.

(2) Consider the complete nonsingular curve C' of genus 2 over Fo with affine equation
y? +y = 2° + 22 + 1. We easily find by explicit computation #C(Fs) = 1 and #C(F4) = 9.
Using the identities > a? = 2" + 1 — #C(Fan) and oya; = 2 we find for J := Jac(C) the
characteristic polynomial f; = t* — 2t3 + 4t2 — 4t + 4. We have #J(F3) = f;(1) = 3 and this
fits, since there are three Fo-rational divisors of degree 2 on C.

In a similar fashion, the genus 3 curve D over Fy given by the affine equation 3% +y =
(z* + 22 +1)/(2* + 2 + 22 + x + 1) has no points over Fy, has 10 rational points over Fy
(the maximum possible for a hyperelliptic curve over F4), and 6 points over Fg; hence the
characteristic polynomial of its Jacobian is t6 — 3¢5 + 7t* — 13¢3 + 14¢2 — 12t + 8.

Applying Corollary (15.36) we find that the curve C' is supersingular and that D is ordinary.

NP(C) NP(D)
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(The dots represent the points (i,ordp(@g_i)), where the ¢; are the coefficients of the charac-
teristic polynomial.)

(3) Let r = p™ and q = 72 = p®™. Let a € F, be a non-zero element satisfying a” + a = 0.
Then the complete nonsingular curve with affine equation y? —y = ax" ! has genus g = (p—1)r/2
and has 1+ pg = 1 4 p*™*! rational points over F,. Note that 1 + p?"*! =g+ 1+ 29./q, so
these curves attain the Hasse-Weil bound ¢ + 1+ 2g,/q. This shows that the Hasse-Weil bound
is sharp for certain g and ¢q. It is not sharp if g is large with respect to g, see Exercise 16.2.

(4) Let C' C P? be the nonsingular quartic curve over Fy given by the homogeneous equation
X3Y +Y3Z + Z3X = 0, also known as the Klein curve. The genus of C is 3 and one easily
checks that #C(Fy) = 3, that #C(F4) = 5, and #C(Fg) = 24. The characteristic polynomial
of Frobenius is f; = t% 4+ 5t3 + 8 and C is ordinary. This curve reaches the Serre bound
q+ 1+ g|2,/q] over Fg. Note that in this case Serre’s bound is better than the original Hasse-
Weil bound: 8 + 1+ 3|2v/8] = 24, whereas 8 + 1 + |61/8] = 25.

(5) Consider the Jacobian Jy(103) of the modular curve Xy(103). The curve X((103) has
genus 8 and has an (Atkin-Lehner) involution w. The Jacobian splits, up to isogeny, as a product
of two abelian varieties, Jy and J_, with J. = Im(w + idJO(log)), the + and — part of w, of
dimensions 2 and 6, respectively. The minus part J_ is attached to a normalized cusp form f
of weight 2 on the congruence subgroup I'g(103), an eigenform for the Hecke operators. It has
a Fourier expansion f =Y 7, a(n)q™ with the coefficients a(n) that are algebraic integers in a
totally real number field K of degree 6 over Q and normalized such that a(1) = 1. The trace
of Frobenius acting on the Tate module T, of J_ ® F,, for p # 103 and ¢ # p is given by the
Fourier coefficient b(p) of the form trace(f) = Y o b(n)g" = .. kg Soneq 0(a(n))g™. This
form has Fourier series starting

6g+4¢>+6¢*+3¢°—3¢°—2¢"+9¢+8¢" —10¢*° — ¢!t — 13¢*2
_q13_9q14_9q15+2q16_’_21q17_3q18_’_...

We observe that for p = 2 (resp. p = 17) the expression p + 1 — b(p) equals —1 (resp. —3).
Therefore, J_®F5 and J_®IF;7 cannot be (isogenous to) a Jacobian since then the corresponding
curve would have a negative number of Fo-rational (resp. Fy;-rational) points. (Note that
isogenous abelian varieties have the same zeta function; see Corollary (16.25).)

§3. The theorem of Tate.

The topic of this section is an important theorem of Tate, asserting that for abelian varieties
X and Y over a finite field k£ and any prime number ¢ # char(k) the natural map

Z¢ ® Hompay (X, Y) — Homg, ) (T X, TiY) (3)

is an isomorphism. Here the RHS of (3) denotes the group of Zs-linear maps T; X — T,Y that
are equivariant with respect to the natural Galois actions on the two terms. Equivalently, these
are the homomorphisms of Z,[Gal(k/k)|-modules, or also the Gal(k/k)-invariant elements in
Homy, (T, X, T,Y) = (T;X)" ®z, T;Y; therefore the RHS of (3) is also sometimes denoted by
zocan(i iy (L X, TeY) or Hom(Ty X, T,y ) G(/8),

Tate’s theorem should be seen as an analogue of 77, with Galois representations taking over

Hom

the role of Hodge structures. There are other types of ground fields for which the analogue of
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Tate’s theorem is true. Zarhin proved that it is true for function field over finite fields; later
Faltings, in his spectacular 1983 breakthrough, proved that the map (3) is an isomorphism for
abelian varieties over any field k that is finitely generated over its prime field (e.g., number
fields). At the same time, there are also types of ground fields for which we cannot hope to have
such a result. E.g., if k = k or also if k is a local field then (3) is not, in general, surjective. We
shall further discuss Faltings’s results in 77.

Over the years the proof that Tate gave has been improved, mainly by Zarhin, and there
are several steps in the proof that work over an arbitrary field. We shall state and prove
results in a general setting. The assumption that we work over a finite field will enter only in
Proposition (16.19), from which Tate’s Theorem (16.20) follows by some general results. Still,
there is one aspect that is special to the case of a finite ground field. Namely, if k is a finite
field, say of cardinality ¢ = p™, then the action of Gal(k/k) on T;X is completely determined by
the single automorphism Ty(7x ). (Note that Ty(7x) is indeed an automorphism for any ¢ # p.)
The reason for this is that Gal(%/ k) is isomorphic, as a topological group, to i, the pro-finite
completion of Z, and is topologically generated by the element ¢ € Gal(k/k) given by p(z) = x1.
Furthermore, ¢ acts on Ty X as the automorphism T(7x ), since ¢ and wx both give the action
“raising all coordinates to the power ¢” on X (k). Hence the elements of Homg,, % /k)(TgX 1Y)
are also the Zy-linear maps f: Ty X — TyY for which Ty(mwy)of = foTy(mwx). As in our proof of
Tate’s theorem we focus on general arguments, this aspect will not play a role there, but once
we pass to applications it is again the geometric Frobenius endomorphism that plays a key role.

(16.15) Lemma. Let k be a field, ks a separable closure, and let ¢ be a prime number different
from char(k).
(i) If X and Y are abelian varieties over k then the map

Ty: Zp @ HOInAv(X, Y) — HomGal(ks/k) (TgX, TgY)
is an isomorphism if and only if the map
Vi: Q¢ ® Homay (X, Y) — Homgai(x, /&) (Ve X, ViY) (4)

is an isomorphism.
(ii) Assume that for every abelian variety Z over k the map

Q¢ @ Endav(Z) — Endgai(k, /1) (Ve Z)

is an isomorphism. Then also for any two abelian varieties X and Y over k the map (4) is an
isomorphism.

Proof. (i) By Theorem (12.10) the map 7} is injective and Coker(7y) is torsion-free (hence free).
Hence Ty is an isomorphism if and only if Q; ® Coker(7y) = 0. Now use that Q, is flat over Z,
so the map V; is again injective and Coker(V;) = Q; ® Coker(T}).

(ii) Take Z := X x Y. We have a decomposition of vector spaces

End®(Z) = End’(X) @ Hom’(X,Y) @ Hom’(Y, X) @ End°(Y).
Likewise we have, writing I' := Gal(ks/k), a decomposition
Endr(V;Z) = Endr(V,X) & Homp (V, X, V;Y) @ Homp(V,Y, V, X) ® Endr(V;Y).
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The map Vp z: Q¢ ® End(Z) — Endgaik,/k)(VeZ) respects these decompositions. In par-
ticular it follows that if Vj 7 is an isomorphism then so is the map Q; ® Homay(X,Y) —
Homgai(i, /r) (Ve X, VoY), O

(16.16) As fuel for Tate’s theorem we need a finiteness property for the number of isomorphism
classes within a given isogeny class. We shall state it here in an axiomatic form. Given a field k,
an abelian variety X over k, and a prime number ¢ # char(k), consider the condition

Fin(X /k, 0) : up to isomorphism there are finitely many abelian varieties Y over k
T for which there is an isogeny X — Y of degree a power of /.

This finiteness property is used in an essential way in the following lemma. Once we have

this lemma the proof of Tate’s Theorem will be easy. For brevity we shall write Q,End(X) for

Q¢ ® End(X), and we view it as a subalgebra of End(V;X). For u € Q/End(X) we shall write

u- VX instead of Vy(u)(V;X).

(16.17) Lemma. Let X an abelian variety over a field k, and let £ be a prime number different
from char(k). Assume that condition Fin(X/k,¢) holds. Then for every Qg-subspace W C VX
that is stable under the action of Gal(ks/k) there exists an element u € QEnd(X) such that
W=u-V,X.

Proof. For n € Zx( define U,, := (W N1y X) + ¢" - T, X, which is a Galois-stable lattice in
VeX with (" - T;X C U, C T;X. Let J&, C X[("](ks) = TyX/{"T;X be the image of U,,.
Then %, is stable under the action of Gal(k,/k) on X[¢"](ks), and using Proposition (3.26) it
follows that %, = K, (ks) for some subgroup scheme K, C X[¢"]. Let m,: X — Y, := X/K,
be the quotient, and let ¢,,: Y;, — X be the unique isogeny such that ¢, om, = [("]x. Using
Proposition (10.6) we find that 7Y = U, as Z,-modules with Galois action; taking this as an
identification Ty(7,): Ty X — T;Y = U, is the map induced by multiplication by ¢ on T, X and
Ty(tn): U, =T}Y — T; X is the inclusion map.

Assumption Fin(X/k, ¢) implies that we can find a sequence n = ny; < ny < --- such that
we have isomorphisms «;: Y;, = Y,,,. Define u; := ¢, o«; o q,, which is an endomorphism of X.
The induced map Ty(u;) is the composition

T,X 2 U, 2y, T,
Because Z/End(X) (:= Z; ® End(X)) is a free Z,~-module of finite rank, it is compact for the
f-adic topology. Hence possibly after replacing the sequence of integers n; by a subsequence,
the elements u; converge f-adically to an element u € Z,End(X). As U,, D U,, D --- the
endomorphism Ty(u) maps Ty X to (ﬁi>1 Unz.) =W nNT,X. On the other hand, we claim that
the image of Ty(u): T; X — (WNT,X) contains ¢" - (W NT,X). To see this note that an element
x € WNT,X lies in U, for every i, so it follows from the given description of Ty(u;) that £ - x
lies in the image of Ty(u;) for every i. Hence ¢™ - x can be approximated arbitrarily closely by an
element in the image of Ty(u); but this image is closed so ¢ - z actually lies in Im(7;(u)). Now
pass to Q-coefficients and note that Q, - (W NT;X) = Qy - (f” -(Wn TgX)) = W; it follows
that the image of Vp(u) is precisely W. O

(16.18) Theorem. Let X an abelian variety over a field k, and let £ be a prime number different
from char(k). Assume that Fin(X/k,¢) and Fin(X?/k, () are true. Then the representation

pe: Gal(ks /k) — GL(V,X)
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is semisimple and the map
Q¢ ® Enday(X) — Endgai(r, /i) (Ve X)

is an isomorphism.

Proof. To prove that py is a semisimple representation, suppose we have a Galois-stable subspace
W C V,X. As just shown, there exists an element u € Q/End(X) with W = u - V, X. Because
Q¢End(X) is semisimple the right ideal u - Q,End(X) is generated by an idempotent e. Write
u=-e-aand e=u-b for some a, b € QEnd(X); this gives u-V;X =e-(a-V;X)Ce-V, X =
u-(b-V,X) Cu-V,X. Hence W =e -V X. Then W' := (1 —e) - V;X is a complement for W,
and W' is again Galois-stable because py(g) commutes with (1 — e) for every g € Gal(ks/k).
This proves that p, is semisimple.

We already know from Theorem (12.10) that the map Q/End(X) — Endgaik, /x)(VeX)
is injective. If C' = Endg,gnq(x)(VeX) then the Bicommutant Theorem (A.2) tells us that
Q¢End(X) = Endc(V,X). Hence it suffices to show that for every ¢ € Endgai, /&) (VeX) and
c € C we have pc = cp. The graph I', C V, X @ V, X is a Galois-stable subspace. Applying
Lemma (16.17) to X? it follows that there exists an element u € Q/End(X?) = M, (Q;End(X))
such that I', = u - V;X?%. But v := (C 0) € Mg(QgEnd(X)) commutes with u, so v-T', =

0 c
you-VeX? = -y VX2 C I',. This means precisely that for every v € V;X we have
¢ p(v) = ¢(c-v); hence pc = cp and the theorem is proved. O

By the Bicommutant Theorem it follows that Q, [Im(pg)], the Q-subalgebra of End(V,X)
generated by the image of py, is the commutant of Q; ® End(X). It is much more difficult, in
general, to determine the image of the representation p; as a subgroup of GL(V;X), or even to
determine the algebraic envelope of this image. See 777

Now we prove the finiteness condition Fin(X/k, ) for abelian varieties over a finite field.
In fact, this is relatively easy and we obtain something quite a bit stronger.

(16.19) Proposition. Let ¢ = p™ be a prime power. Given an integer g > 0 there are only
finitely many isomorphism classes of abelian varieties of dimension g over F,.

Proof. If X is an abelian variety of dimension g over F, then Y := X x (X*)* has dimension 8¢
and by Zarhin’s Trick (11.29) Y admits a principal polarization. By Theorem (?7), up to
isomorphism there are finitely many abelian varieties over F, that can be embedded as an
abelian subvariety of Y, and X is one of them. Hence it suffices to show that, given h > 0, there
are (up to isomorphism) finitely many abelian varieties Y over F, of dimension h such that Y
admits a principal polarization. Moreover, by Proposition (1.14) the isomorphism class of Y as
an abelian variety only depends on the isomorphism class of Y as a variety.

If (Y,u) is a principally polarized abelian variety then L := (id, u)* 2y is an ample line
bundle on Y and by ??? L? is very ample. Let N := 6" — 1. Choosing an F,-basis of H°(Y, L?),
which has dimension 6" = N + 1, we obtain a closed embedding 1: X < PV with Hilbert
polynomial ® = 6" - t". Hence Y, viewed as a closed subscheme of PV via ¢, gives an F,-
valued point of the Hilbert scheme Hilbg (PY). But Hilbg (PY) is a scheme of finite type over Z
(see FGA, n® 221 or ?7), so it has finitely many F,-rational points. So there are only finitely
many varieties Y of dimension h that admit the structure of an abelian variety with a principal
polarization, and as explained this implies the proposition. ]

Combining Theorem (16.18) and Proposition (16.19), we obtain the Theorem of Tate.
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(16.20) Theorem. Let k be a finite field. Let ¢ be a prime number with ¢ # char(k).
(i) For any abelian variety X over k the representation

pe = pe,x: Gal(ks/k) — GL(V,X)

is semisimple.
(ii) For any two abelian varieties X and Y over k the map

Zy @ Hompy (X, Y) — HomGal(ks/k) (TgX, TgY)
is an isomorphism.

(16.21) Remark. Let us again note that
Homga(k, /by (Te X, ToY) = {h € Homg, (T; X, T,Y) | Ty(my)oh = hoTy(rx)}

and similarly with Qy-coefficients. The reason is that Gal(ks/k) is isomorphic to Z and is
topologically generated by the element ¢ € Gal(k/k) given by ¢(z) = 27; furthermore, for any
abelian variety X over F, we have py x(p) = Ty(rx). If h: T; X — T;Y is a Z,-linear map
then Gy, := {7 € Gal(ks/k) | pe,y(7)oh = hepgx(7)} is a closed subgroup of Gal(k,/k), so if
Ty(mwy)oh = hoTy(mx) then this means that ¢ € Gj; but because the subgroup generated by ¢
is dense in Gal(ks/k) this implies that G, = Gal(ks/k).

With the same argument we also see that V; X is still semisimple as a representation of
(¢) C Gal(k/k), as the two groups give the same collection of stable subspaces. The subalgebra
Q¢[Im(pe)] C End(VyX) generated by the image of pg, x equals Q[ x]; see also Exercise (16.4).

If X and Y are abelian varieties over F, the rank of Hom(X,Y) can easily be computed
from the characteristic polynomials fx and fy. This is based on the following general result.

(16.22) Lemma. Let K be a field.
(i) Given polynomials fi, fo € K|t|, define

r(f1, f2) = ric(f1, f2) := ) multp(f1) - multp(fs) - deg(P),
P

where P runs over all monic irreducible polynomials in K[t] and where multp(f;) denotes the
multiplicity of P as an irreducible factor of f;. Then r(fi, f2) is independent of the field in which
we compute it, i.e., for any field extension K C L we have rg(f1, f2) = r.(f1, f2)-

(ii) Let Vi and Vy be finite dimensional K-vector spaces, and let m; € Endg(V;) be a
semisimple endomorphism of V;. We give V; the structure of a K|t]-module by setting t - v :=
m;(v). Consider the K-vector space

HomK[t](Vl,Vg) = {h S HOHIK(Vl,VQ) ‘ Tooh = h°7T1} .
If f; is the characteristic polynomial of w; then we have dimg (HomKM(Vl, Vg)) =r(f1, f2).

Proof. Consider the situation as in (ii). Define W; := @p (K[t]/ (P))multp(fi), where again P runs
over all monic irreducible polynomials in K [¢]. The assumption that the 7; are semisimple implies
that V; =2 W; as K[t]-modules. If P and P’ are monic irreducible polynomials in K [t] with P # P’
then it is easily seen that Hom g (K[t]/(P),K[t]/(P')) = 0. On the other hand, K(P) :=
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K|t]/(P) is a finite field extension of K and Endgpy (K[t]/(P)) = Endg(p) (K(P)) = K(P),
which has K-dimension equal to deg(P). From this (ii) readily follows. For (i), consider the mod-
ules V; := ©p (K[t]/(P))mu}tP(fi), and note that Homp(Vi,z,Va,1) = L @ Homgpy(V1, Va).
Applying (ii) twice (once over K, once over L) gives that rx (f1, f2) = rr(f1, f2). O

Note that we can also calculate 7(f1, f2) over any subfield of K that contains all coefficients
of f1 and fo. The actual calculation of r(f, fo) will of course depend on the field, but the
number that comes out does not.

(16.23) Corollary. Let X and Y be abelian varieties over F,, with characteristic polynomials
fx and fy, respectively. Define r(fx, fy) as above. Then Hom(X,Y") has rank r(fx, fy)-

Proof. By Tate’s Theorem (16.20) the rank of Hom(X,Y") equals the Qy-dimension of the space
{h: ViX = V,Y | Vy(my)eh = hoVy(mx)}. Now apply (ii) of the Lemma. O

Our next goal is to prove a p-adic version of Tate’s Theorem. As discussed in Chapter 10
the p-adic analogue of the Tate-f-module of X is the p-divisible group X[p>°]. The proof of
Theorem (16.20) that we have given does not immediately carry over to the p-adic context. The
main obstacle lies in the fact that X [p®] is not simply a vector space with some additional
structure, which makes it difficult to apply the results from Algebra that we used in the proof
of Theorem (16.18). To overcome this we can use Dieudonné theory. By 77 we know that for
an abelian variety X over a finite field IF,, the characteristic polynomial of mx acting on the
Dieudonné module M (X) is equal to fx. This already gives enough information to deduce the
p-adic Tate Theorem from the f-adic results by a simple dimension count, as follows.

(16.24) Theorem. Let X and Y be abelian varieties over a finite field k of characteristic p.
Then the map
®: Z,, ® Homay(X,Y) — Homgr (X [p™], Y [p>])

is an isomorphism.

Proof. By exactly the same argument as in the proof of Lemma (16.15), it suffices to show that
the map Q,Hom(X,Y) — Hom" (X[poo], Y[poo]) is an isomorphism. By Theorem (12.10) this
map is injective, so it suffices to prove that the Q,-dimension of Hom" (X [p>], Y[poo]) is at most
the rank of Hom(X,Y).

Let K be the fraction field of W(k). Write Mg(X) and Mg(Y) for the F-isocrystals
associated to X[p>°]| and Y [p>°], respectively. The Dieudonné functor Mg gives an isomorphism
Hom" (X[p™],Y[p>]) = Hompjsoc (Mg(Y), Mg(X)). Consider the K-vector space

H :={h € Homg (Mg(Y), Mg(X)) | he M(my) = M(rx)<h}.

By 7?7 the characteristic polynomial of M(7wx) equals fx, and similarly for Y. Hence by
Lemma (16.22) we have dimg (H) = r(fy, fx) = dimg, (Q,Hom(X,Y)).

Let #k = ¢ = p™. We know that 7x = F )’?/ 4> and by definition the endomorphism of M (X)
induced by Fly, is Faz(x); similarly for Y. Hence Hom p-jsoc (MQ(Y), MQ(X)) is a Q,-subspace
of H. We are done if we can show that the K-linear map

K ®g, Hompjsoc (Mg(Y), Mg(X)) — H (5)

is injective, because then the Q,-dimension of Hompjsoc (Mg(Y), Mg(X)) is at most the K-
dimension of H.
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The extension Q, C K is a cyclic Galois extension of order m, with Gal(K/Q,) gener-
ated by the automorphism ox. (Notation as in ??7) Suppose we have elements hq,...,h, €
Hom p_isoc (Mg (Y), Mg(X)) that are linearly independent over Q,, and suppose we have a non-
trivial relation > j=1 ajhj = 0 with coefficients a; € K. Without loss of generality we may
assume that a; = 1. We have

r

0= FJZQ(X)" Z ajh; = Z Ufr{(aj) ) (F&(x)"hi)

j=1 j=1
= Z ok (aj) - (hie FM(Y)) (Z UK(aj)h ) FM(Y)v
j=1
and because Fyycy) is injective it follows that Z;zl ot-(aj)h; = 0. Summing this for i =
0,...,m — 1 we find that Z;zl tracer /g, (a;j) - hj = 0, and because the elements h; are linearly

independent over Q, we conclude that traceg g, (a;) = 0 for all j. But a; = 1 so for j =1
this is clearly false. This proves that the map (5) is indeed injective, and the surjectivity of the
map @ follows by looking at the dimensions of the spaces involved. O

Note how close Theorem (16.20) and its companion (16.24) come to the corresponding
statement for complex abelian varieties. There one has an isomorphism

Hom(X,Y) — Hompys (Hl(X, 7),H, (Y, Z)) :

see 7?. The Tate module T; X with its Galois action is an analogue of the lattice H;(X,Z) with
its natural Hodge structure.

Note that because we use contravariant Dieudonné theory, we have Z, ® Hom(X,Y) —
Hompwm (M (Y), M(X)). In particular, Z, ® End(X) — Endpm (M (X))°PP, the opposite ring
of Endpm (M (X)).

84. Corollaries of Tate’s theorem, and the structure of the endomorphism algebra.

TateCorIsog (16.25) Corollary. Let X and Y be abelian varieties over a finite field k of characteristic p.
Then the following are equivalent:

(a) X ~Y;
(bl) for some £ # p we have V,; X = V,Y as representations of Gal(k/k);
(b2) for all £ # p we have V,X = V,Y as representations of Gal(k/k);
(c1) X[p>]~Y[p>];
(c2) Mg(X) = Mg(Y) as F-isocrystals;

(d) fx = fv;
(el) Z(X5t) = Z(Y;t);

(e2) for a]] finite field extensions k C k' we have #X (k') = #Y (k).

Proof. The implications (a) = (b2) = (bl) are clear. Now assume that for some ¢ # p we have
a Galois-equivariant isomorphism h: V;X — V,Y. Possibly after replacing h by ¢"h for some
n > 0 we may assume that h(7,X) C T,Y, so that

U := {h € Homgak, /1) (Te X, T;Y) | h is injective} .
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is non-empty. Note that U is f-adically open in Homgai(, /) (T2 X, T;Y) as it is given by the
condition that det(h) # 0. But Hom(X,Y) C Z,Hom(X,Y) is f-adically dense, so by Tate’s
Theorem (16.20) we can find an element f € Hom(X,Y') such that Ty(f) is injective. The
kernel of f has to be finite, for otherwise Z := Ker(f)%, ; would be a non-zero abelian subvariety
of X (note that we are over a perfect field) and since Ty(f) is zero on T;Z C T, X this gives a
contradiction. As the existence of the isomorphism A implies that dim(X) = dim(Y), it follows
that f is an isogeny.

Similarly it is clear that (a) implies (c1) which by 77 is equivalent to (c¢2). If (¢2) holds then
Hompwm (M (Y),M(X )) again contains a non-empty open subset of injective maps. By Theo-
rem (16.24), using that Hom(X,Y") is dense in Z,Hom(X,Y'), there exists an f € Hom(X,Y)
such that M (f) is injective, which is equivalent to f[p>°] being an isogeny. Now the same
argument as in the ¢-adic case shows that f is an isogeny.

Because fx is the characteristic polynomial of Vj(7wx) for any ¢ # p we have (bl) = (d).
Conversely, because the representations p, are semisimple, (d) implies that V, X = V,;Y as Galois
representations. (Cf. Remark (16.21).)

The equivalence of (d), (el) and (e2) readily follows from the Weil Conjectures, Theo-
rems (16.4) and (16.7); note that the complex zeroes of fx are precisely the zeroes of Z(X;t)
that have absolute value ¢*/2, with ¢ = #k. O

(16.26) Corollary. Let X be an abelian variety over a finite field.

(i) The center of End®(X) is the subalgebra Q[rx|. In particular, X is elementary if and
only if Q[rx] = Q(wx) is a field, and this occurs if and only if fx is a power of an irreducible
polynomial in Q[t].

(ii) Suppose X is elementary, dim(X) = g. Let h = f3* be the minimum polynomial of 7 x
over Q. Further let d := [End®(X) : Q(rx)]"/? and e := [Q(mx) : Q]. Then de = 2g and
fx = he.

Proof. (i) Tt is clear that Q[rx] is contained in the center of End’(X). To prove that the two
are equal, it suffices to show that Qq[rx] is the center of Q,End®(X) for some ¢ # p. (If Z is
the center of End’(X) then Q; ® Z is the center of Q;End’(X).) But if f lies in the center of
Q¢End’(X) then f is an element of the commutant of Q,End’(X), which is Q, [Im(p)]; cf. the
remark after Theorem (16.18). Now use that Q,[Im(p¢)] = Q¢[rx], see Exercise (16.4). The
remaining assertions of (i) are clear; see also (ii) of Prop. (16.3).

(i) We know that fx = h® for some §, and comparison of the degrees gives § = 2g/e. On
the other hand, by Corollary (16.23) the Q-dimension of End’(X) equals ed?, so § = d. O

(16.27) Corollary. Let X be an abelian variety of dimension g over a finite field. Then
2g < dimg (EndO(X)) < (29)?, and X is of CM-type.

Proof. If X is elementary then by (ii) of the previous Corollary we have dimg (EndO(X ) =
2g - d = (29)?/e, so indeed 2g < dimg(End’(X)) < (2¢)%. In this case D = End’(X) is a
central simple algebra of degree d? over K := Q[rx], and any such algebra contains a subfield
L c D with [L : K] =d, so [L : Q] = de. Hence the equality de = 2¢ implies that X is of
CM-type. For general X the assertions are readily obtained by considering the decomposition
of X up to isogeny as a product of elementary factors. O

(16.28) As a preparation for the next corollary of Tate’s theorem we need a result about the
structure of certain quotients of Dieudonné rings.
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The situation that we shall be interested in is the following. We are working over a finite
field F,, where ¢ = p™ is a power of a prime number p. Let L be the fraction field of W (Fy).
Further we consider a finite field extension Q, C K = Q,(w) with @ # 0. Let h = f§ € Q,[T]
be the minimum polynomial of w over Q,, so that K = Q,[T]/(h). Choose an algebraic closure
K C K and an embedding i: L < K. The subfield L’ := i(L) C K is independent of the
choice of i. Consider the ring B := L[t;o]/(h(t™)), which we view as a K-algebra via the
homomorphism K = Q,(w) — B that sends w to the class of t". If the residue field of Ox
has cardinality p/, let v := ged(m, f) = [K N L' : Q,]. Finally let KL’ be the compositum of
K and L’. To summarize, we have the following diagram of fields, where we denote by Ky C K
the maximal unramified subfield, and where e = [K : Kj] is the ramification index.

S
Y

The field extension K C KL’ is cyclic of degree m/v. A generator of the Galois group is the

automorphism 7 that via the isomorphism L'® g1 K — KL’ corresponds to the automorphism
o, ®idk, where o/ is the unique automorphism of L’ that induces the Frobenius automorphism
x +— zP on its residue field. Note that this automorphism is not, in general, the arithmetic
Frobenius o/ k. (Recall that the latter is, by definition, the unique generator of Gal(K L'/K)

that induces the automorphism z — 27’ on the residue field of KL/ .) The relation between
the two is that 7//¥ = OKL'/K> a8 7f/¥ corresponds to Ui, ®idg on L' ® g~ K, which indeed

induces  — 2P’ on the residue field.
Let ord: K — Q be the valuation with ord(p) =

(16.29) Lemma. Situation and notation as in (16.28). Then B = L[t;o]/(h(t™)) is isomor-
phic, as a K-algebra, to M,,((KL’/K, T, w)), the algebra of v X v matrices with coefficients in
the cyclic algebra (KL'/K,T,w). In particular, B is a central simple K-algebra with Brauer
invariant (ord(w)/ord(q)) - [K : Q).

Proof. Write (KL'/K,T,w) = KL'[p], where the element ¢ satisfies
OV =w and p-a=7(a)-a forallae KL

We have L' ®g, K = L[T]/(h(T)), and sending the class of T to the class of t™ in B we obtain
an isomorphism

B= (L' ®g, K) [t; oL ® id} / (tm —(1® w)) . (6)
In particular, dimg (B) = m?, which is equal to the K-dimension of M,,((KL’/K, T, w))
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Taking the isomorphism (6) as an identification, consider the homomorphism of K-algebras
j: B— M, (KL’[(p]) that sends an element 2 ® y € L' ®q, K to the diagonal matrix

v—1

diag(zy, op(2)y, ..., 07 (2)y)
and that sends the class of ¢ to the matrix
0 1
0 1
0
1
® 0
in which all omitted entries are 0. One checks directly that j gives a well-defined homomorphism
of K-algebras. As the source and target have the same K-dimension, to prove that j is an
isomorphism it suffices to show that it is surjective.

It is clear that the restriction of j to L' ®g, K C B gives an isomorphism L' ®g, K —
(KL')” = KL' x --- x KL', where we place the v factors KL’ on the diagonal. Further, j(t")
is the diagonal matrix diag(ep,...,p). Together, these generate the full diagonal subalgebra
A:=KL'[p] x -+ x KL'[p] C M, (KL'[¢]). It follows that the image of j also contains

0 1
0 1
j(t) - diag(e™/ M w1, 1) = 0
-1
1 0
Call this matrix A. By taking all expressions diag(0,...,0,1,0,...,0) - A* we get all elemen-
tary matrices, and together with A these generate the whole M, (K L [go]) So indeed j is an

isomorphism.
For the last assertion we just note that

(KL'/K,7,w) =2 (KL /K, 7" @!/") = (KL |K,0x 1 /5, @),

which has Brauer invariant

ord (w//") _,ood(w) . ord(w)  ord(w) .
) T~ g gy
(Cf. (A.5) and (A.6).) O

With the aid of this lemma we obtain a precise result about the structure of the endomor-
phism algebra of an elementary abelian variety X, viewed as a simple algebra over its centre

Q[rx].

(16.30) Corollary. Let X be an elementary abelian variety over a field with ¢ = p" elements.
Let K = Q(rx). If v is a place of K then the local invariant of End®(X) in the Brauer
group Br(K,) is given by

0 if v is a finite place not above p;
ordy(rx) 1 - Q,] ifv is a place above p;
. v place above p;
inv, (End’(X)) = { @ 3
1/2 if v is a real place of K;
0 if v is a complex place of K.
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Note that the line about the local invariant at complex places is included for completeness
only, as the Brauer group of C is trivial.

Proof. Without loss of generality we may assume that X is simple, for if X ~ Y™ then
End®(X) = M,, (EndO(Y)) which has the same local invariants as End’(Y). Then D :=
End’(X) is a divison algebra with center K := Q(mx). If K admits a real place then D is
necessarily of Type III in the Albert classification (cf. Remark ?7), in which case inv, (D) = 1/2
for all infinite places of K (which are then all real). See also (16.33) below for further discussion.

If ¢ is a prime number with ¢ # char(k) and Ay,...,\; are the places of K above ¢ then
Qr®g K = K\, x---x K, with each K}, a finite extension of ;. We have a corresponding
decomposition V; X =V, X & --- @ V), X, with V), X := K, - ;X a vector space of dimension
d =2g/[K : Q] over K,. Tate’s theorem, taking into account what was explained in (16.21),
gives that Q,End(X) = Endg,gx (Vi X), so

End’(X) @k Ky, = QEnd(X) ®@g,ex K,
= Endg,ex (VeX) ®q,ex Kx, = Endg,, (Va, X) = Ma(K),) .

Hence indeed the local invariants at the \; are trivial.

It remains to compute the local invariants at the places of K above p. Let h = f3*, and
let h = hy ---h, be its factorization in Q,[t]. The factors h; correspond to the places v; of K
above p, and we have a decomposition Q, ® K = K; x --- x K,, with K; = Q,[t]/(h;) the v;-adic
completion of K. As Q, ® K acts on Mg(X) this induces a decomposition of Q,-vector spaces
Mop(X)=M, & - & M,.

Write L for the fraction field of W (k). Let o be the automorphism of L induced by the
Frobenius automorphism of &, and consider the skew polynomial ring L[F| = L[F;o]. The
isocrystal Mg(X) is a (left) L[F]-module. We know that mx acts on Mg(X) as F™, which
is L-linear. Because F' is a central element in L[F] the subspaces M; C Mg(X) are L[F]-
submodules, so the decomposition Mg(X) = M; & --- & M, is a decomposition of isocrystals.
The minimum polynomial of mx = F™ acting on M; is just the polynomial h;.

By Tate’s Theorem (16.24) we have an isomorphism

Qp ® End®(X) =5 Endyp) (Mg (X)),
and this induces isomorphisms
End’(X) @k K; = (@, ® End’(X)) ®(q,ex) Ki — Endpm(M;)PP.

As h;(F™) = 0 on M; we may view M; as a module over B; := L[F]/(h;(F™)). But by
Lemma (16.28), B; is a central simple algebra over K;. If N; is the unique simple B;-module
(up to isomorphism) then M; = N/ for some r > 1, and we find

Endy ) (M;)**P = Endp, (M;)°P" = M,(B;),

which is Brauer-equivalent with B;. Hence the local invariant of End’(X) at the prime v; equals
that of B;, which we have calculated to be (ord,, (mx)/ord,,(q)) - [K; : Qp]. This finishes the
proof. O

EndFFRen (16.31) Remarks. (i) To avoid any misunderstanding let us again stress that throughout, by
End’(X) we mean the endomorphism algebra of X over the given finite field. The structure of
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the endomorphism algebra may change under an extension of the ground field; for some concrete
examples see (16.33) below.

(ii) As in Corollary (16.30), suppose X is elementary and let K := Q(nx). Let ¢ = #k, and
define invariants i, by |7x|, = ¢~ , where | |, is the normalized absolute value corresponding
to a prime v. (See 0.6.) Then we can also describe the local invariants of the endomorphism
algebra by the rule

inv, (End0 (X)) =i, mod Z for all primes v of K.

(For the infinite primes use Theorem (16.4); for the primes above p use that ¢=% = ¢, Ord”(ﬂX),

80 4, -ord, (¢q) = ord,(mx)-ord,(q,) = ord,(mx)-[K, : Qp].) The product formula for normalized
absolute values translates into the sum formula ) 4, = 0 mod Z in the Brauer group.

(iii) Still in the situation of Corollary (16.30), let x — Z be the complex conjugation on
K = Q[rx], and let Ky = Q[rx + ¢/mx] C K be the fixed field. Then Kj is a totally real
field, and either Ky = K or K is a totally imaginary quadratic extension of Kj; see also the
discussion in (16.33) below. Let v be a place of K above p, and let vy be its restriction to Kj.
We know that 7x = ¢/nx. It follows that ord,(mx) + ords(mx) = ord,(q) = ords(g). Hence
inv, (EndO(X )) = —invy (EndO(X )). Further, if v = o, which occurs if the place v is either
inert or ramified in the extension Ky C K, then [K, : Q] is necessarily even, and it follows that
inv, (End’(X)) = 0.

(16.32) Corollary. Let X be a simple abelian variety over a finite field k. Let d be the
index of the division algebra D := End’(X) over its center Q[rx]| (so d = [D : Q(rx)]'/? and
fx = (f§¥)?). Then d is the least common denominator of the local invariants i, = inv, (D).

Proof. As discussed in (A.4) the index of D equals its period, i.e., the order of its class [D] in the
Brauer group Br(K). As Br(K) — ][, Br(K,), this order is just the least common denominator
of the local invariants i,,. O

(16.33) Let X be a simple abelian variety over k = F,. Write D := End’(X). Because X is of
CM-type, D is either of Type III or of Type IV in the Albert classification; see Remark 77. We
can see in which case we are by looking at the center K := Q(7wx). Indeed, as we have already
seen in the proof of Theorem (16.4), either K is totally real (D of Type III) or K is a CM-field
(D of Type IV).

The real case is very exceptional. Indeed, let h := féx. As we have just seen, fx = h?
where d is the index of D. If K is totally real then all complex roots of fx are real numbers of
absolute value ,/q. We distinguish two cases:

(1) If ¢ is a square then h = t &+ ,/q, so K = Q and we find that d = 2g/e = 2g. By
Corollary (16.30) we have inv,(D) = 1/2 = inv (D) and inv,(D) = 0 at all other places.
Corollary (16.32) then gives d = 2. Hence X is an elliptic curve and D is the unique quaternion
algebra over (Q that is non-split at p and co and split at all other primes. This algebra is usually
denoted by D, . By Theorem (15.35) X is supersingular.

We shall prove in 77 that the isogeny classes corresponding to the characteristic polynomials
(t—/9)* and (t+,/q)* both occur. If we extend scalars from k to its quadratic extension k' = F 2
then the two isogeny classes coincide, as in both cases the characteristic polynomial over &’ is
(t — q)?. (But over k' there is also the isogeny class with characteristic polynomial (¢ + ¢)?,
which is not defined over k.) Concretely this means that if F is a supersingular curve over k
with characteristic polynomial (¢ — \/6)2, a suitable quadratic twist of E has characteristic

polynomial (¢ + ,/q)?.
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(2) If q is not a square then h = t*> — ¢, so K = Q[,/q] = Q[\/p| and we find that d = g.
There is a unique prime p of K above p and inv,(D) = 0. So D is the unique quaternion
algebra over K that is non-split at the two infinite places of K and split at all finite primes.
Using Corollary (16.32) we find that d = 2, so g = 2 and X is a simple abelian surface. If we
extend scalars from k to its quadratic extension k&’ = Fg> then X’ := X ® £k’ has characteristic
polynomial fx: = (t —¢)*. In this case we find that End®(X’) & My(D, ) and X' is isogenous
to Y2, where Y is a supersingular elliptic curve over k&’ with characteristic polynomial (t — ¢)2.
(So Y realizes one of the two isogeny classes from case (1).) Again we shall see in ?? that the
isogeny class over k with characteristic polynomials t?> — ¢ does occur.

Except in these particular cases, the center K = Q(7x) is always a CM-field. Note that in
case (2) the structure of End’(X) changes when we extend scalars from T, to F

As we have seen in Corollary (16.27), the Q-dimension of End”(X), for X an abelian variety
of dimension g over a finite field, lies between 2g and (2g)?. Let us analyze the two extremal
cases.

(16.34) Corollary. Let X be an abelian variety of dimension g over a finite field k.
(i) The following are equivalent:
(a) dimg(End’(X)) = 2¢;
(b1) End’(X) = Qryl;
(b2) End’(X) is commutative;
(¢) fx has no multiple root.
(ii) The following are equivalent:
(a) dimg(End"(X)) = (29);
(b) Qlrx] = Q;
(¢) fx is a power of a linear polynomial;
(d) End’(X) = M, (D, ), where D,, o, is the quaternion algebra with center Q that has
local invariant 1/2 at p and oo and local invariant 0 at all other places;
(e) X is supersingular with End(X) = End(X7);
(f) X is isogenous to EY9 for a supersingular elliptic curve E over k with End(E) =
End(Ex).

Proof. We start with two general remarks. Suppose fx has r distinct complex roots, with
multiplicities vy, ..., .. On the one hand, 14 +--- + v, = deg(fx) = 2¢. On the other hand, by
Lemma (16.22) we may calculate r(fx, fx) over C, and this gives dimg (End’(X)) = v+ -+v2.

Next write X ~ X; x --- x X,, where the factors X; are elementary over k and satisfy
Hom"(X;, X;) = 0 for i # j. (In the decomposition (1) in Corollary (12.5), take X; := Y;™.)
Write dimg (EndO(Xi)) = e;d? with e; the degree of Q(rx,) over Q. Then dimg (EndO(X)) =
S d?e;, whereas by (ii) of Corollary (16.26) we have 2g = Y 7| d;e;.

We now prove (i). With the above notation, (ia) means that ) v; = Z * which occurs
precisely if all v; are equal to 1. So (i)(a) < (i)(c). Also (i)(a) means that Zl (dZe; =301 diei
this occurs precisely if d; = 1 for all ¢, which is equivalent to saying that End’ (X)is commutative.
This shows that in (i) we have (a) < (b2). Finally, the equivalence of (b1) and (b2) is immediate
from part (i) of Corollary (16.26).

Next we prove (ii). Condition (a) means that Er_l Vj = (Z;Zl v;)?, which occurs if and
only if » = 1. So (a) < (c). Further, (a) says that ZZ (die; = (D01, die;)?, and as for each
index i we have d?e; < (d;e;)? this only occurs if n = 1 and e; = 1. It follows that in (ii) we
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have (a) < (b). (Alternatively, (b) < (c) readily follows from Corollary (16.26) together with
(ii) of Proposition (16.3).)

The implication (d) = (a) is clear. If (a)-(c) hold then (d) follows by application of
Corollaries (16.26) and (16.30).

Next assume that (a)—(d) hold. By (d), X ~ E9 for some elliptic curve, and by The-
orem (15.35) it follows from (c) that E is supersingular. Further, by (a) and the estimates
in (16.27) we have End)(X) = Endo( 7); s0 also Endy,(X) = Endz(X3). (See Exercise (12.2).)
So (f) holds, and it is clear that this unphes (e).

Finally assume that (e) holds. If a € Q is a root of fx then «/,/q is a root of unity.
Indeed, if K is a number field containing a/,/q then the assumption that all slopes of the
Newton polygon equal 1/2 implies that ord,(a/,/q) = 0 for all primes v; see (16.9). Hence there
is a finite extension k C k/, say of degree N, such that the roots oV of J(xor are all equal to
¢N/2. So over k' we have (c), hence also (a). But by the assumption that End(X) = End(X%)
it then follows that (a) also holds over k. O

(16.35) Remark. If X is a supersingular abelian variety over a finite field & then it follows from
the proof that already over a finite extension of k the p-divisible group X [p>°] becomes isogenous
to %lg /2 This behaviour is a-typical: if X has Newton polygon ( and is not supersingular then
in general we need to extend scalars to k to get an isogeny between X[p™] and 5. (Notation
as in 77.)

To make this explicit, take a prime number p and an integer a with p{a and a? < 4p. Let
f :=t2 — at + p. We shall prove in Theorem (16.41) below that there exists an elliptic curve F
over F, with fg = f. By Theorem (15.35), E is ordinary. So over F, we have that E[p™] is
isogenous to Q,/Z,, x @m, and we may ask if such an isogeny can be realised over a finite field.
The answer is no. To see this, let a; and ap = &; = p/a; be the roots of f in Q. If Er, [p™]
is isogenous to Q,/Z, x @m over [F,, for some ¢ = p™, then in particular the characteristic
polynomial of 73} on the rational Dieudonné module Mq(FEF,) equals ¢ - (¢ — p). Hence one of
the «; is a root of unity. But there is no root of unity that has minimum polynomial of the form
t2 — at + p, so indeed we need to extend scalars to Fp in order to get an isogeny between E[p™]
and Q,/Z, x Gum

(16.36) Remark. The results that we have proven allow us to recover End’(X), for an abelian
variety X over F,, from the characteristic polynomial fx. Before we describe a procedure for
this, let us quickly recapitulate what we know.

If X ~ Y™ x---x Y™ is the decomposition of X up to isogeny as in (12.5), so with
each Y; simple over Fy and Y; ¢ Yj if @ # j, then we have fx = fy--- fy'", and by (i) of
Corollary (16.26), each fy, is a power of an irreducible polynomial, say fy, = h{*. Then D, :=
End®(Y;) is the division algebra with center Q(ry,) = Q[t]/(h;) that is uniquely determined
by the local invariants given in Corollary (16.30). Further we have a; - deg(h;) = 2dim(Y;) =
index(D;) - deg(h;), so a; = index(D;). Finally we have End"(X) = [[\_, My, (D;) with 7x —
(wl, e ,wn).

These facts make it clear how to reconstruct EndO(X ), up to isomorphism, from fx. Start
by writing fx = h{*---h#m with h; € Q[t] monic irreducible and h; # h; if ¢ # j. Define
K; := Q[t]/(h;), and let w; € K; be the class of t. Next, let D; be the division algebra with
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center K;, uniquely determined up to isomorphism, with local invariants i,(B;) given by

% [(K)w : Q] if v is a place of K; above p;

inv,(B;) = 1/2 if v is a real place of Kj;
0 else.

Then the index of D; divides p;, and if we let m; := p;/index(D;) we have End’(X) =
IIZ:l‘AlWM(l)i»

Note that if X is simple we in fact only need to know the minimum polynomial of mx over Q
in order to reconstruct End’(X).

(16.37) Example. (i) Suppose X/F, is a simple abelian variety of dimension g which is
ordinary. By (16.33) we know that Q[ x| has no real embeddings. Comparing Theorem (15.35)
and Corollary (16.30) we find that all local invariants of End”(X) are zero. It follows that
End’(X) = Q[rx] is a CM-field of degree 2g over Q. This conclusion is in fact valid for simple
ordinary abelian varieties over any field of characteristic p, as can be shown using the Serre-Tate
theory of canonical liftings. See 77.

(ii) Let X = Jac(C) with C the nonsingular complete curve of genus 2 over F3 defined
by the equation y* —y = 2 + 2~ ! + 1. Counting points over F3: for i = 1,...,4 we find that
fx =tt+1t3—2t2 4+ 3t +9, which is an irreducible polynomial in Q[t]. Using Corollary (16.26)
we find that End’(X) = Q[rx], a CM-field of degree 4 over Q. By Corollary (15.36), X is
ordinary. After extensions of scalars to For we find fxgr,, = (t2 + 8t + 27)27 and it follows
from (i) together with (i) of Corollary (16.26) that Xp,. is isogenous to the square of an elliptic
curve. This conflicts with Waterhouse [1], p. 553, Thm. 7.2 and with Milne and Waterhouse [1],
p. 62, lines 15-16. See van der Geer and van der Vlugt [1] for further examples.

85. Abelian varieties up to isogeny and Weil numbers.

(16.38) Definition. Let g be a power of a prime number. Then a ¢-Weil number is an algebraic
integer 7 with the property that |c(7)| = /g for all embeddings ¢: Q[r] — C. Two g-Weil
numbers 7 and 7’ are said to be conjugate if they have the same minimum polynomial over Q,
or, what amounts to the same, if there is an isomorphism Q[r] — Q[r’] sending 7 to 7’.

(16.39) Let X be an elementary abelian variety over F,. By Theorem (16.4), the Frobenius
endomorphism 7x is a ¢-Weil number. For every embedding t: Q[rx] — Q we get a ¢-Weil
number «(7x) in Q, and up to conjugacy this number is independent of the choice of ¢. So we
may represent the conjugacy class of mx by an actual number in Q. Note that we have assumed
X to be elementary, since we want Q[rx]| to be a field.

It is an easy exercise to show that an algebraic integer 7 € Q is a g-Weil number if and only
if = +,/g or 7 is a root of T? — aT + q, where a = 7 + ¢/ generates a totally real field Q(a)
in which a? — 4q is totally negative. (This is Exercise (16.6).) This gives a concrete method for
constructing g-Weil numbers: Take an irreducible monic polynomial g € Z[T'] all whose complex
roots are real and lie in the open interval (—2,/q,2,/q). Let a € Q be a root of g. Then a root
7 of T? — aT + q is a g-Weil number such that F = Q(r) has no real embeddings into C. For
example, let g = T6 —4T% — T* + 1773 — 9T? — 16T + 11 € Z[T]. All six roots are real and lie
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in the interval (—2v/2,2+v/2). Therefore, a solution of 72 — aT + 2 with a a root of g defines an
algebraic integer of degree 12 over Q whose absolute value under any embedding is v/2, so this
gives a 2-Weil number.

In general, the characteristic polynomial fx contains a little more information than the
conjugacy class of the g-Weil number 7x. For instance, mxn» gives the same conjugacy class
as myx for all n > 1, whereas fx» = f%. DBut for a simple abelian variety X over F, we
can recover fx from 7wy, as we have fx = h' with h = féx the minimum polynomial of 7x
over Q and i the index of the division algebra End’ (X), which is determined by the conjugacy
class of mx via the method described in (16.36). Combined with the equivalence (a) < (d) in
Corollary (16.25) we obtain the following lemma.

(16.40) Lemma. Let X and Y be simple abelian varieties over a finite field F,. Then X and Y
are isogenous if and only if the associated q-Weil numbers wx and my are conjugate.

Miraculously, every g-Weil number occurs, up to conjugation, as the Frobenius of a simple
abelian variety over F,, as a result of Honda asserts. Combination with the Theorem of Tate
gives the following description of the isogeny classes of simple abelian varieties over F,.

(16.41) Theorem of Honda-Tate. Let ¢ be a power of a prime number. For every q-Weil
number 7 there exists a simple abelian variety X over F, such that mx is conjugate to .
Furthermore, we have a bijection

isogeny classes of simple ~ conjugacy classes
—_—
abelian varieties over [F, of ¢-Weil numbers

given by X — mx.

The inverse of the map X — 7wy associates to a g-Weil number 7 a simple abelian variety X
such that fx is a power of the minimum polynomial fg of m over Q. In general there may be
no abelian variety with characteristic polynomial fg; see 77 below.

The injectivity of the map X +— mx is a consequence of Tate’s Theorem (16.20); see
Lemma (16.40). The proof of surjectivity is based on an explicit knowledge of the reduction
modulo primes of special abelian varieties—namely abelian varieties of CM-type—defined over
a number field. It is done in three steps: (i) We show that 7 is a g-Weil number if and only if 7V
is a ¢"V-Weil number for some N. (ii) We already know how to reconstruct the division algebra
D = End’(X) from 7. Then we choose a CM-field L that splits D and construct a complex
abelian variety of CM-type by L, show that it is defined over a number field, and calculate
the Frobenius of its reduction modulo a prime. (iii) We show that by choosing the CM-type
appropriately we get as Frobenius a power of .

We now carry out the details.

(16.42) Lemma. Let k' be a extension field of k = F, of degree N, and let X' be a simple
abelian variety over k'. If X = Resy/,(X') is the Weil restriction of X' to k then fx(T) =
fx/(TN). In particular, the ¢ -Weil numbers wx and 7§ are conjugate.

Proof. The Tate module T,(X) is the induced module from Gal(k/k’) to Gal(k/k) of T;(X")
from which the formula results immediately. O

(16.43) Corollary. If 7 is a ¢-Weil number such that 7 is conjugate to the Frobenius of a
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simple abelian variety over F v then 7 is conjugate to the Frobenius of a simple abelian variety
over [F,.

Proof. If X’ is a simple abelian variety over F,~ whose Frobenius 7y is conjugate to N, let
X := Resys /1 (X’), which is an abelian variety (not simple in general) over F,. By Lemma (16.42)
7 is a root of fx and is therefore conjugate to the Frobenius of a k-simple factor of X. O

(16.44) Proposition. Let m be a Weil g-number, F' = Q(w) and E the division algebra which
is non-split at the real places of I, split at the complex places and the places not above p and
with ¢~ ™) = ||7|, (mod 1) for places above p. Then there exists a CM-field L containing F
such that L splits E and [L : F] = [E : F]'/2.
Proof. We know that either F is totally real, and then F' = Q or F' = Q(\/p) and [E : F]'/2 = 2,
or F'is a CM-field with totally real subfield Fy = Q(7 + g/7).

i) Suppose that F' is totally real. Then we take L = F(y/—p). This is a CM-field and E
splits over L as the invariant is multiplied by 2 = [L : F'.

ii) Let d = [E : F]'/2. We take for Lo a totally real field which is an extension of degree
d of Fy and such that for every place vy of Ly above p the local degree is d; see Exercise 77
for the construction. Then L = FLg is a CM-field and under the extension the invariant is
multiplied by the local degree [L, : F,| = [Lg : Fp|d, thus killing it. Hence FE is split at all
places over p. O]

Given a Weil g-number 7 with F' = Q(7) and F a division algebra associated to 7 (unique
up to isomorphism) we choose a CM-field L that splits E. Recall that an abelian variety X over a
field K is called of CM-type L if we have an embedding L — End% (X) with 2dim(X) = [L : Q].

(16.45) Proposition. There exists an abelian scheme X defined over the ring of integers of
a finite extension K of Q, whose generic fibre is of CM-type L and such that the Frobenius of
the special fibre is conjugate to a power 7V of .

Proof. To construct X we have to specify the way L acts on the tangent space at the origin.
If C' is a field of characteristic 0 and p is complex conjugation on L then we choose a CM-type,
i.e., a subset ® of Homg_a14(L,C) such that ® U ®p = Homg_aie(L,C) and 2N Pp = . An
abelian scheme X defined over Spec(R) with R C C' is called of type (L, ®) if the generic fibre
X is of type L and the representation of L on the tangent space of X at the origin decomposes
as the sum ) pca ¥ of characters. By 77 (referentie voor CM AV) we know that there exists an
abelian scheme of type (L, ®) defined over the ring of integers of a number field in C.

We now take for C' an algebraic closure of Q,. We decompose Q, ® L = Hw‘ p Lw, with Ly,
the completion of L at the place w. Let ¥,, = Homg, (L, C') and we identify 3, with its image
in Hom(L,C) and then have Hom(L, C) = U, ,X,. It will now turn out that the reduction of
an abelian scheme of type (L, ®) up to isogeny is determined by the way the embeddings ¢ € ®
are distributed over the X%,,. We set &, = ® N ¥, and have ® = U, ,®,. ;From (referentie
voor berekening p-deelbare groep) we derive:

(16.46) Lemma. Let X be an abelian scheme of type (L, ®) defined over the ring of integers
Ok of a finite extension field K of Q,. Let ko be the residue field of Ok with qo = #ko and
let X, = X ® kg. Then the Frobenius mx/, can be identified with an element my € L C
End), (Xx,) and

for every place w over p.
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Now given 7, and hence F' and F and a CM-field L that splits E' we are still free to choose
the CM-type ®. We claim that we can choose ® in such a way that for every place w|p of L we
have

To see this, let us denote by v the place of F' underlying w and put

~—
~—

w(mo
w(qo

B w(mo

(90)

[Lw = Qp] =

[Ly : Fy|[Fy : Qpl.

~—

g
5
g

Then n,, = inv, (E®p L) (mod Z) is an integer since L splits E and obviously n,, > 0. Moreover
from the identity 77 = q we have n,, + 1y, = #X = #X ). We now define a CM-type ® by
choosing disjoint subsets ®,, of cardinality n,, such that & = U,,®,, satisfying ® U p® = ¥ and
® N p® = (. Then automatically we have w(m)/w(q) = #P,,/#3. By Lemma 16.46 we obtain
an abelian variety defined over a finite field ky whose Frobenius is conjugate to an element 7y of
L with w(mg)/w(qo) = #Pw/#Xw. The following Lemma finishes the proof of the Honda-Tate
Theorem.

Weilgnulg (16.47) Lemma. Given a Weil g-number 7 and a Weil qo-number 7y in L with w(w)/w(q) =

w(mo)/w(qo) for all places w|p. Then there exists positive integers N and Ny such that 7™ = WéVO.

Proof. After replacing m and my by suitable powers we may assume that ¢ = o and hence that
w(q) = w(qo) for all w|p. At the other places m and 7y are units since 77 = moTo = ¢. And at
the infinite place both 7 and 7y have absolute value ¢'/2. Therefore, /7o has absolute value 1
at every place of L, so 7/mg is a root of unity. O

ExaHT (16.48) Example. Let ¢ = p™ and suppose that n and n’ are integers with 0 < n < n’,
g.c.d.(n,n') =1 and n 4+ n’ = m. Then there exists a simple abelian variety X of dimension m
defined over F, such that 7 is a root of 7% + p"r + p™, cf. Example (‘ExaEndFF’), 3).
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§6. Isomorphism classes contained in an isogeny class.

The results of the preceding sections give a complete description of the isogeny classes of simple
abelian varieties over a given finite field k of cardinality ¢, via the Weil g-numbers, and a
description of their endomorphism algebras. This leads to two questions: i) Which rings occur
as the endomorphism rings of a simple abelian variety over k7 ii) What are the isomorphism
classes of (polarized) abelian varieties defined over k contained in a given isogeny class of abelian
varieties over k7 Unfortunately, we have only very partial answers to these questions. They
connect with very interesting research on Shimura varieties. For elliptic curves and for ordinary
varieties over the prime field we have a satisfactory description. We shall indicate these results.

We first need some notions from algebra. Let A be an algebra over Q with identity element 1.
Then by a lattice we mean a free Z-module in A whose rank is equal to dimg A. A subring R C A
is called an order if it contains 1 and a lattice. If A C A is a lattice in A then we define the left
(resp. right) order of A as {a € A: aA C A} (resp. {a € A: Aa C A}). These are examples of
orders in A.

Note that every element of an order is integral over Z, because....

If X is an abelian variety of dimension ¢ over a finite field k£ then R = End(X) is an order
in the algebra F = End{(X). It has the following special property.

(16.49) Lemma. For an abelian variety X over a finite field F, the endomorphism ring
Endy(X) is an order containing m and q/m.

Proof. Recall that 7 € Endg(X) is the ‘mth power’ of relative Frobenius F' = Fx. Similarly,
the relation F'V = VF = p implies that similarly ¢/m is the m-th power of Verschiebung, see
5.20, hence is contained in Endy(X). O

If X is a simple abelian variety over k with Weil g-number mx then its isogeny class is
determined by the pair (End{(X),7yx) and we may identify End}(X) with a given division
algebra E such that mx corresponds to an element w € E. Any two such identifications coincide
on the center Q(m), hence by the Skolem-Noether theorem (see ??7) they differ by an inner
automorphism of E. In particular, the endomorphism ring of X is determined in E up to
conjugation. But if we specify the action of E on the Tate module V;(X) then by 16.20 we can
retrieve Endy (X)) inside the algebra E by the conditions that

Endy(X) ® Z; = {a € E: To(a)To(X) C Ty(X)} (1)

and
End,(X) ® Z, = {a € E: aX[p™] C X[p™]} (1)

since a lattice is determined by its localizations.
The endomorphism ring with the element 7 determines the isogeny class in the following
precise sense.

(16.50) Lemma. Let X and Y be abelian varieties over k. If o: Endg(Y) = Endg(X) is
an isomorphism sending 7wy to wx then there is an isogeny X — Y inducing the isomorphism
Proof. Since the characteristic polynomials are equal it follows from Theorem ‘TateCor2’
that X and Y are isogenous. Let ¢: X — Y be an isogeny inducing an algebra isomorphism
©*: End}(Y) = End}(X). By Skolem-Noether this algebra isomorphism differs from the one
induced by « by an inner automorphism of Endg(Y) of the form x — pxp~1 with p € Endg
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and by multiplying it with a sufficiently large integer we may assume that p is an isogeny of Y.
Composing ¢ with this p gives the desired isomorphism. 0

(16.51) Let G be a commutative group scheme defined over k£ with an action of the ring R.
For any finitely generated left R-module M we can define a functor on k-algebras by A —
Homp (M, G(A)). This functor is representable, because a resolution R* — R? — M — 0 gives
rise to an exact sequence 0 — Homp(M,G(A)) — G(A)® — G(A)® by which we can identify
this functor with the kernel of G® — G¢. Thus Homp (M, G) is a commutative group scheme.
The functor M +— Hompg(M,G) is a left-exact additive functor from the category of finitely
generated left R-modules to commutative group schemes.

If R is an order in an algebra E then by a left R-ideal in F we mean a left R-submodule
of E/ which contains a lattice. The condition that a left R-module [ in E contains a lattice is
equivalent to the fact that I contains an isogeny and is automatically fulfilled if X is simple and
I # (0). Let X be an abelian variety with endomorphism ring End(X) = R and let I be a left
R-ideal. By applying Homp(—, X) to the short exact sequence 0 — I — R — R/I — 0 we find
a long exact sequence that begins like this

0 — Homg(R/I,X) — X — Homg(I,X) — ExtRp(R/I,X) — 0, (2)

where the last term is Ext(R, X) = (0) because R is projective, see Atiyah and Macdonald 1.

(16.52) Definition. Let X be an abelian variety with R = Endy(X) and let I be a left R-ideal
in R. We define H(X,I) := Homg(R/I, X) and we view it via the exact sequence (2) as a finite
subgroup scheme of X. Moreover, we put X; := X/H(X,I). This is an abelian variety defined
over k and isogenous to X.

The following lemma provides alternative descriptions of Xj.

(16.53) Lemma. Let ¢: X — X be the canonical map.
i) We have H(X,I) = NyerX|a] with X[a] = ker(a).
ii) If aq, ..., o generate of I then X is isomorphic to the image of (ay,...,q.) : X — X",
iii) For | # p we have
Ty(p) ' Te(X1) = NaerTe(e) ' To(X)

iv) The dual of Ty() ' Ty(X;) in T,(X)Y is I T,(X)V.
v) For the Dieudonné modules we have

M(X;[p™]) =Y o, M(X[p™)).

acl

Proof. If R — R — R/I — 0 is a resolution and ry,...,r, are the corresponding generators
of I then we get Homp(R/I,X) = ker{(r1,...,7,) : X — X"} and the statements i) and ii)
become clear. The other statements are a direct consequence of this, use 10.6. O

The Lemma makes it possible to describe the lattice Endy(X;) in E via these local conditions
iii) and v) using the conditions (1) and (1’).

Note that by assumption R/I is finite, and if N annihilates R/I then N also annihilates
Exty(R/I,X). Thus by the exact sequence (2) the abelian variety X; is the connected compo-
nent of Hompg (I, X). If I and J are isomorphic as left R-modules, then the isomorphism extends
to an isomorphism of F which by Skolem-Noether is scalar multiplication, I = JA, i.e., [ and J
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belong to the same ideal class of R. By the definition of X; a R-isomorphism between I and J
implies that X; and X ; are isomorphic. But the converse need not hold. It holds if we impose
an extra condition on the ideals.

(16.54) Definition. A left ideal I of R = Endj(X) is called a kernel ideal if I is the annihilator
of the subgroup scheme H(X,I), that is, if I = {a € R: a«H(X,I) = 0}. The ideal J = {«a €
R: aH(X,I) =0} with J = H(X,J) is called the kernel ideal associated to I.

(16.55) Examples of kernel ideals. i) A principal ideal R\ is a kernel ideal. Any a € R that
vanishes on H (X, I) = ker(\) factors as a = @\ for some § € R. ii) If I is a kernel ideal then
so is I\ for any isogeny \. To see this, consider an element « that annihilates H(X,I\). Then
it annihilates ker()\), in particular it annihilates H(X, R\) and since by i) the ideal R\ is a
kernel ideal it follows that @ € R\, say o = (A. Since « annihilates H (X, I)\) we have that
H(X,I)\) C ker B\. Since A is an isogeny and thus surjective this implies that (3 annihilates
H(X,I) ie., B €I and thus a € I\. O

(16.56) Lemma. Let X be a simple abelian variety over a finite field k with R = End(X)
and let I be a left R-ideal. Then Endy(X1) contains the right order of I and equals it if I is a
kernel ideal.

Proof. Let p: X — X7 be the canonical map. An element p in the right order of I has the prop-
erty that p preserves Ty(p) 'Ty(X1) = Naera'Ty(X)and similarly Y-, aM (X [p™]),hence
belongs to Endy(X). Suppose that § is an elementpreserving these lattices. Then J = I + I3
is a left ideal of R and we have H(X,I) = H(X,J). This shows that if I is a kernel ideal we
have [ = H(X,J) = J. O

(16.57) Proposition. Let I and J be kernel ideals of Endy(X). Then X; = X if and only
if I = J\ for some invertible A € End)(X).

Proof. We already remarked above that X; =2 X; if I = JA. It remains to show that
an isomorphism X; = X; implies that I = JA for an invertible element of E. By Exercise
16.15 there exists an isogeny p € R such that p~'(H(X,I)) = Ny (H(X,J)). Note that
p~Y(H(X,I)) = H(X,Ip) and Ng'(H(X,J)) = H(X,JN). By 16.55 both Ip and IN are
kernel ideals, and as annihilator of the same subgroup scheme H (X, Ip) = H(X,JN) the ideals
Ip and JN are equal. We find I = JNp~1. O

(16.58) Proposition. Let X be an abelian variety over a finite field k with endomorphism
algebra E. Then every maximal order in E occurs as an endomorphism ring of an abelian variety
in the isogeny class of X. Moreover, if R = Endy(X) is a maximal order then so is Endy(X7)
for any left R-ideal I.
Proof. We claim that Endy(X;) contains the right order of I. Indeed, if « € I and j is in the
right order of I then ayj € I and one checks that j maps T;(X;) and M (X;[p*]) to itself.

Let S be a maximal order of . Then a multiple N - S is contained in R for some N € Zx;.
Let I be the left ideal generated by N -S. Its right order contains S, therefore the endomorphism
ring of X contains S and equals S since S is maximal.

By Deuring 2, p. 75 (??77) or Reiner 1, (21.2) the right order of a left ideal of a maximal
order is maximal. O

(16.59) Proposition. Let X be a simple abelian variety over a finite field k whose endomor-
phism ring R = Endy(X) is a maximal order in E = End(X). Then rankH (X,I) = N(I), the
reduced norm of I in E and every left ideal I of R is a kernel ideal.
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Proof. If I = R\ is a principal ideal then rankH (X, I) = rank X [\] = deg\ and we know by (ref
naar End hfdstk) that degh = N(RX). Given an arbitrary left ideal I we let R’ be its right order.
Then there exists a left R'-ideal J such that I.J = R\, see (Deuring [2], p. 106 ???7). Moreover,
we may choose N(J) prime to rankH (X, I). We then have N(I)N(J) = N(R\) = deg)\. The
reader may check in Exercise 16.10 that rankH (X, IJ) = rankH (X, I)rankH (X, J). Thus we
find that rankH (X, ) divides N (/). Applying the same reasoning to J we find that rankH (X, J)
divides N(J). Together this shows that rankH (X, I) = N(I).

Finally, if I’ is the kernel ideal associated to I then I’ O I and we have rankH (X, I) = N(I'),
thus N(I’) = N(I) and it follows that I = I'. O

(16.60) Remark. Let X be an elliptic curve over k = F, with R = End;(X) the ring of
integers of an imaginary quadratic field in which p is inert. Then X and X®) are isogenous via
Fx but X® is not of the form X; for an ideal I of R. Every ideal is a kernel ideal, but there
is no ideal I with H(X,I) = ker(Fx).

(16.61) Proposition. Let X be an ordinary simple abelian variety over a finite field k. Then
R = Endy(X) is commutative. If moreover Endy(X) is a maximal order in the fraction field
of R then the set of k-isomorphism classes of abelian varieties in the isogeny class of X with
endomorphism ring R is a torsor over Pic(R).

Proof. By ‘ExaEndFF’ we know that £ = End’(X) has no real primes and by ‘EndFF’ the invariant
of E is 0 or ord,(q) above p and zero for the other finite places, hence is an integer. It follows
that F = F is commutative. If R is a maximal order then by 16.57 the class group of R acts.
We need to see that there is one orbit. By the theory of the canonical lift we have for each X
a canonical lift and isogenies lift also. The lattice of a lift is a projective R-module of rank 1.
This gives the bijection. U

§7. Elliptic curves.

We now illustrate the concepts from the earlier sections in the case of elliptic curves. Let X be
an elliptic curve defined over a finite field k of characteristic p. Then multiplication by p factors
as

x5 x® Y x

We now have two possibilities: i) V' is separable; ii) V is inseparable. In the first case X is
called ordinary and in the second case supersingular. In the supersingular case we see that
V = Fx ) since both have the same kernel, the unique «,, in X (P)[p]. We also see then that px
gives a k-isomorphism X & X (p2), i.e. the j-invariant satisfies jp2 = j and then j € Fp.. For
convenience we give a number of characterizations of ordinary elliptic curves.

(16.62) Proposition. Let X be an elliptic curve over a finite field k = F, with R = End(X)
and #X(F,) = ¢+ 1 —t. Then the following are equivalent:
i) X is ordinary;
ii) X has p-rank 1, i.e., #X[p|(k) = p;
iii) t # 0 (mod p);
iv) F'= Q(w) is an imaginary quadratic field and p splits in F'.

Proof. i) = ii). Since V is étale the group scheme ker(V') C X|[p]/ker(Fx) is an étale group
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scheme and by VFy = px it follows that it is of order p. ii) = iii) We have #X(Fpn) =
q"+1—a" —a" (with a and @ the roots of fx) and for suitable n this is divisible by p. Since
aa = q it follows that o™ +a@" = a + @ (modp) and that ¢ = « + @ is prime to p. iii) = iv).
The discriminant A = t2 — 4¢ of F is < 0 and a square mod p. iv) = i) If p = pg’ in the ring
of integers of F then m = p" " With n + n’ = m. Then by Theorem ‘EndFF’ the invariants of
End)(X) at p and ¢’ are n/m and n//m with n +n’ = m and by ‘pidim’ we have either n = 0
or n’ = 0. Suppose that m = p™. Look at the isogeny X — X . This is a separable isogeny of
degree p because its kernel is different from the connected kernel of X — X, hence kerpy is
not connected. 0

We now consider isogeny classes of elliptic curves. Isogeny classes of elliptic curves are described
by their Weil g-number 7 with 72—t 7+¢ = 0, hence by the trace of Frobenius t = q+1-#X(F,).
The following result of Deuring describes all ¢ that occur.

(16.64) Theorem. The integer t occurs as the trace of an elliptic curve defined over F, with
q=p"
i) t is prime to p and t* < 4q;
ii) If m is odd then a) t = 0; b) t = +1/2q and p = 2; ¢) t = ++/3q and p = 3;
iii) If m is even then a) t = £2,/q; b) t = £,/q and p # 1(mod 3); ¢) t = 0 and p # 1(mod 4).
Proof. We have to check which Weil g-numbers 7 with 72 — tm + ¢ = 0 give rise to elliptic
curves. If m € Q, then in view of t* — 4¢ < 0 the discriminant vanishes and fx = (T £ \/g)?
with and m necessarily even. We get t = £2,/q and m even, the case iii a).

So assume now F # Q. Then F is an imaginary quadratic field and fx = T2 — tT + ¢ with
t? < 4qg. We have to check when this gives an elliptic curve. The condition is (cf. ‘pidim’) that
m = ord(P,(0)) for the p-adic factors P, € Q,[T].

If p = pg’ splits in F then m = p”p’”/ with n+n' = m and the invariants at p and ' of E
are n/m and n//m. In order to get an elliptic curve we need n = 0 or n’ = 0. This is equivalent
to the condition that ¢ = m + 7 is prime to p. This gives case i).

If p does not split in F' then fx remains irreducible in Q,[7"]. Then there is a unique place
v|p and since 7T = ¢ we have ord,(m) = (1/2)ord(q). It follows that 7/,/q has absolute value
1 at all embeddings, hence is a root of unity in an imaginary quadratic field, hence of order
dividing 4 or 6. The reader may now check using Exercises 16.7, 16.8 that the cases listed give
exactly all the possibilities. O

if and only if t is one of the following:

We illustrate this by a little table listing the isomorphism classes of elliptic curves defined
over k = F3. The elliptic curve is given as 2 = f(x). We also give the j-invariant.

f t | 1/#Aut(X) i T
a4+l | -2 1/2 | -1 142
3+ 2% -1 1 1/2 1 (14++/—11)/2
-2 4+1 | -1 1/2 1 | (~1£/=11)/2
2 —2? -1 2 1/2 | -1 1++/-2

4z 0 1/2 0 +v/=3
3 —x 0 1/6 0 +v/-3
—r+1 | -3 1/6 0 | (=3++/-3)/2
x> —z—1 3 1/6 0 (3+£+-3)/2

We also give a table for the field k& = Fqy listing the possible traces ¢ and the frequencies
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with which these occur, where we define the frequency as 7y 1/#Autg, (X) with the sum over
all the Fg-isomorphism classes of elliptic curves defined over Fg with the given trace.

t | 0 |£1 | £2 | £3 | *4 | 5 | =6
S 1/#Autg, |12 | 1 |3/2 [1/6 | 1 |1/2 |1/12

Let E be the endomorphism algebra of an isogeny class of elliptic curves defined over F, with
corresponding Weil g-number 7 and field ' = Q(7). If F' = Q then t = 2, /g, the elliptic curve
X is supersingular and by ‘ExaEndFF’ we have F = D,,, the unique division quaternion algebra
over Q ramified at p and at co. If F' # Q then F is an imaginary quadratic field Q(1/#2 — 4¢) and
by ‘TateCor4’ and ‘TateCorb5’ we have ¥ = F. The curve X can be ordinary or supersingular
depending on whether ¢ = 0(modp) or not. We now determine the possible endomorphism
rings.

Orders in a quadratic number field K are special. They are completely determined by their
disriminant A = Dec?, where ¢? is the largest square such that D = A/c?> = 0,1(mod4). Then
D is the discriminant of K and the (positive) integer ¢, the conductor, is the index of the order
in the ring of integers of the number field. To such an order R we can associate its class group
Pic(R) of isomorphism classes of projective modules of rank 1 or invertible ideals in K. We
write h(R) for the class number #Pic(R).

(16.66) Theorem. Let X be an elliptic curve over a finite field k with E = End®(X) and
Weil number 7. If F' = Q(7) then the following orders occur as endomorphism ring of an elliptic
curve defined over k in the isogeny class of X:

(i) ordinary case E = F': every order containing 7;

ii) supersingular case with E = D,,: every maximal order;

iii) supersingular case with E' = F': every order containing m whose conductor is prime to p.
Proof. 1) If X is ordinary with endomorphism algebra F then Z[r| is maximal at p since the
derivative of fx at 7 is 2w —b and this is prime to p. Let now R be an arbitrary order containing
7. Then possibly R # Endy(X), but then there are only finitely many primes [ # p, say [y, ..., [,
such that R; # Endy(X);. Choose a lattice L in V;, (X) that contains 73, (X) and which has
order R;,. Such a lattice exists since Vy(X) is free of rank 1 over F;. Since R contains 7 this
lattice is Galois invariant. We take X; to be the quotient of X by the finite subgroup L, /T, (X).
Then we have Ty(X) = T;(X1) for all [ # [; and Endy(X;) = Ry, .Repeating this procedure gives
us an elliptic curve with endomorphism ring R.

(ii) If R is an order in a finite dimensional Q-algebra E then R is maximal if and only if
R ® Zj, is maximal in F ® Q,, for all prime numbers p; see Reiner 1, (11.2). Now assume that
X is supersingular and E = D,, is non-commutative. For all ¢ # p we have F ® Qp = M3(Qy)
and R is conjugate to Msy(Z¢), hence maximal at [ # p. We now look at the case [ = p. By
16.58 we know that the maximal order occurs for an elliptic curve defined over [F, contained
in the isogeny class. Since we only look at [ = p we may restrict ourselves to p-order isogenies
defined over k. These can be factored as a composition of Frobenii F. If we apply a k-isogeny
F" : X — X®") then F" induces an isomorphism on the endomorphism rings via o — a®").
This implies the maximality at p.

iii) At [ # p the argument of i) shows that we can get any order in this isogeny class.
Consider now the case [ = p. After a quadratic extension of the base field we get £ = D,, and
the order is maximal. At p the algebra D, remains a division algebra and as such has a unique
maximal order containing all integral elements. This order intersects any subfield in its maximal
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order. Clearly this intersection is Endp, (X). O

We illustrate the theorem by listing representatives y? = f(z) for the isomorphism classes of
elliptic curves defined over F; with the corresponding Weil 7-numbers and their endomorphism
rings with the conductor c¢. Note that R need not be equal to Z[r].

f t | 1/#Aute(X) | T ¢ | h(R)

22 +1 | —4 1/6 |0 —24+v/-3 |1 1

2 +2 | -1 1/6 |0 | (-1+3V/=3)/2 |1 1
343 | =5 1/6 |0 | (=5h++v/=3)/2 |1 1

3+ 4 5 1/6 |0 BG+v=-3)/2 |1 1
345 1 1/6 |0 (1+3v/-3)/2 |1 1
346 4 1/6 |0 24+/-3 |1 1
4 0 1/2 |6 +v/=7 |2 1
4z +1 3 1/2 |1 (3++/-19)/2 |1 1
> +r+3 2 1/2 |5 1+v/-6 |1 2
2 rr4+4 | =2 1/2 |5 -1+v-6 |1 2
B +r+6 | -3 /2 |1 | (=34+v=19)/2 |1 1
z3 4 3z 0 1/2 |6 +V/-7 |1 1

P +3r+1 | —4 1/2 |2 (—2++-3) |2 1
B +3r+2 | -1 1/2 |3 | (-14£3y/-3)/2 |3 1
23+ 3z +3 2 1/2 |4 1+v-6 |1 2
3 +3r4+4 | -2 1/2 |4 —14+v-6 |1 2
3 +3x+5 1 1/2 |3 (1+3v/-3)/2 |3 1
22 +3x4+6 4 1/2 |2 —2++/-3 |2 1

(16.67) Proposition. Let X be an elliptic curve over a finite field k with R = Endy(X).
Then every non-zero left R-ideal is a kernel ideal for every elliptic curve Y with End(Y) = R.
Proof. 1If R is non-commutative then R is a maximal order and by 16.59 every left R-ideal is
a kernel ideal. So assume now that R is commutative. Then R is an order in an imaginary
quadratic field and the ideals of R with order R are exactly the invertible ideals. Consider for
a left ideal I the canonical map ¢: X — X;. For [ # p the dual of Ty(p) 1 (Ty(X)) is I T,(X)V
and the [-part of H(X,I) is given by Ty(X)V/IT,(X)V. But Ty(X)"Y is free of rank 1 over R,
and therefore at [ the ideals I and the annihilator of H(X,I) coincide. At p the order R is
maximal, and the Dieudonné module is a sum of free modules.

(16.68) Theorem. Let X be an elliptic curve X defined over k = F, with R = End(X)
and E = End((X). Let I(X,R) be the set of k-isomorphism classes of elliptic curves over k
contained in the k-isogeny class of X with endomorphism ring R.
i) If X is ordinary then I(X, R) is a torsor over the ideal class of R.
ii) If X is supersingular and E = F' is commutative then the ideal class group of R acts freely
on I(X, R) with 2 orbits if p is inert in R and 1 orbit else.
iii) If X is supersingular and E = D,, is non-commutative then #I1(X,R) is 1 or 2. It equals 1
if and only if the prime ideal over p in R is principal.
Proof. 1) Using the construction X — X we see that the ideal class group of R acts freely. We
need to see that there is one orbit. One way to see this is to use the canonical lift. The canonical
lift of an elliptic curve Y in I(X) is a complex elliptic curve with endomorphism ring R. By the
theory of complex multiplication we know that these are in 1 — 1 correspondence with the class
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group of R; for each such curve the lattice is a projectice R-module of rank 1. Alternatively,
if X — X/G is an isogeny of X and X/G — X the dual map then Ty(X/G) corresponds to a
sublattice of Tp(X). One now checks that every lattice comes from an ideal.

ii) If X is supersingular with £ = F' commutative then the class group acts freely on the
set of elliptic curves in this isogeny class with endomorphism ring R. If X — Y is a separable
isogeny then I claim that Y = X; for some invertible ideal I. Indeed, at [ # p the isogeny is
given by an overlattice of Ty(X), or dually by a sublattice of the dual T;(X)". But sincethe
dual is free of rank 1 over R; the sublattice is of the form I;T;(X)Y for some local ideal I;. At
p it suffices to consider inseparable isogenies and these are compositionsof Frobenii. Note that
p ramifies or is inert. If (p) = p? thenX®) = X o and we find just one orbit. If p is inert,then
there is no I such X®) = X7, hence there are exactly 2 orbits. iii) Finally, suppose that E is
non-commutative. We must show that there is one orbit. Note that R is maximal. Let Y be an
elliptic curve with Endg(Y) = R. This induces by 16.50 an isogeny of X with Y given by the
ideal I = Rp. By 16.56 this ideal is a two-sided ideal. Two-sided ideal in R are classified, see
Deuring [1], p. 263 (???). They are of the form nR or ngp with p*> = (p). These represent one
class if and only if p is principal. O

(16.69) This theorem makes it possible to count the number N (¢) of isomorphism classes of
elliptic curves defined over £ = F, contained in a fixed isogeny class given by ¢. For example,
if ¢ # O(modp) and t? < 4q then N(t) = >, h(R), where the sum is over the orders R with
Z|r] € R C Op with Op the ring of integers of the imaginary quadratic field F' = Q(m). See
Exercise 16.11 for the precise formulas, and see also Schoof [1]. Actually, always in mathematics
it is better to count the objects with their natural weight which is 1 over the order of the
automorphism group of the object. In the case at hand, we have to count an elliptic curve
X with a weight equal to 1/#Auty(X). Therefore, we introduce a modified class number, the
Hurwitz-Kronecker class number.

(16.70) Definition. The Hurwitz-Kronecker class number H(A) is the number of SL(2,Z)-
equivalence classes of positive binary integral quadratic forms ¢ = aX? + bXY + cY? with
discriminant —A, each class [p] being counted with weight 2/#Aut(y), with Aut(p) the group
of orientation preserving automorphisms of ¢. Equivalently, we let H(A) = > €2yt h(—A/c?)
with 2(N) the class number of the order R with discriminant N divided by 2/#Aut(R). Fur-
thermore, we set H(0) = —1/12.

We give a small table illustrating the Hurwitz-Kronecker class number.

n 0| 3| 4 | 7[8 |11 | 12 |15 | 16 |19
H(n) | —1/12 [1/3 [1/2 |1 |1 | 1 [4/3 | 2 [3/2 | 1

(16.71) Proposition. Let t be an integer with t> < 4q and t # 0(modp). The number of
isomorphism classes of elliptic curves X defined over F, weighted with 1/#Autg_ (X) with trace
of Frobenius t equals (1/2) H(4q — t?), where H(A) is the Hurwitz-Kronecker class number of
discriminant A.

Proof. Let t be a number prime to p occurring as the trace of Frobenius of an elliptic curve X
over [F,. Then each elliptic curve over I, in the isogeny class of X can be lifted canonically and
after choosing an embedding W (F,) into C we get a complex elliptic curve and an associated
lattice with Endg(X) as endomorphism ring. In particular, each automorphism can be lifted
too. We thus find a bijection between the isomorphism classes containedin the isogeny class and
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isomorphism classes of Endg-lattices. O

The reader will notice that the weights of all elliptic curves with the same j-invariant add
up to 1. This is an instance of the following phenomenon.

(16.72) Theorem. Let Y be a variety defined over the finite field k such that its absolute
automorphism group Aut(Y') is finite. Then we have the formula:

1
I —
Z #Autk(Y’) ’
Yl
where the sum is over representatives Y' of the k-isomorphism classes contained in the k-
isomorphism class of Y.
Proof. If @ : Y — Y’ is an k-isomorphism and v € G = Gal(k/k) then a~! - a" is an k-

_1.0{’7

automorphism of Y. The map which associates to v € G the automorphism a, = «
defines a cocycle on G with values in the (possibly non-abelian) group A = Aut(Y'), that is,
we have the relation a,s = a, - aj. It is well-known that this gives a bijection between the
set of k-isomorphism classes contained in the k-isomorphism class of Y and the cohomology set
HY(G,A). Since G is essentially cyclic, in the sense that G is topologically generated by the
Frobenius element we can use continuous cohomology. Therefore, a cocycle v — a, € Z!(G, A)
is given by the image of F), i.e., it is determined by giving an (arbitrary) element of A.Two
cohomologous cycles thus correspond to elements that differ by the actionof A on itself given by
L.a.el" for e € A. The orbits correspond to the cohomology classes in H(G, A).The

stabilizer of an element ar is in 1 — 1-correspondence with the setAuty(Y”’). Indeed, we have a

ar— g

bijection Autz(Y) «— Autz(Y’) via p— 0 =a-p-a~!, where a: Y — Y’ is a k-isomorphism
of Y with Y’. So we get

1 1 1_—-1_F _F

P anF =p a_lanF =a 0 o«

and this equals ap = a~'a’" if and only if 0¥ = 0, i.e., 0 € Autg(Y”). Counting the orbits now
gives

#A
A= -
# ; #Autk(Y’) ’
and by division by #A the desired formula ) ., 1/#Aut,(Y') = 1. O

(16.73) Counting the number of abelian varieties over a finite field of cardinality ¢ can be
used to obtain information about automorphic forms. We give a simple example. For a pair
of integers (t,n) we define Pj(t,n) for positive even k as the coefficient of 2¥=2 in the power
series development of (1 — tz + nz?)~!. Equivalently, if we factor this quadratic polynomial
(1 -tz +na?) = (1 — pz)(1 — pz) then

k=1 _ g1

Pi(t,n) ="

p—=p
and equals the trace of the k — 2th symmetric power of diag(p, 7).
One place where the class numbers that we met naturally occur is the trace formulafor the
action of the Hecke operators on the space of modular forms on SL(2,Z). The following theorem
and an elementary proof can be found in 2.
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(16.74) Theorem. Let k > 4 be an even integer and n a positive integer. Then the trace of
the Hecke operator T'(n) on the space Sy of cusp forms of weight k on SL(2,Z) is given by

1 1
TT(n) = — > Pu(t,n)H(4n — t%) — 5 > min(d,d')" ",
teZ dd’'=n

Using 16.68 and 16.71 we can rewrite this now purely in terms of elliptic curves over finite
fields.

(16.75) Theorem. Let p be a prime. The trace of the Hecke operator T'(p) on the space of
cusp forms of even weight k € 27 with k > 4 on SL(2,7Z) is given by

~TSym*™*(Ty())

TTp) +1= Y. JAuts (E)

E/F;mup t‘O ng

where the sum is over the IF-isomorphism classes of elliptic curves defined over F,,.

Example. We have Piy(t,p) = —p°® + 15p*t2 — 35p3t* + 28 p?t6 — 9pt® + 10, Noting that
Plg(t,p) = Plg(—t,p) and P12(2,3) = —263, P12(1,3) = 253 and P12(0,3) = P12(3,3) = —243
and using the table we get TrT'(3) = 252 for k = 12. This fits since 7(3) = 252 is the third
Fourier coefficient of the generator A =3 >° | 7(n)¢"™ of Sis.

One should see this formula as an instance of a Lefschetz trace formula. The trace on
cohomology is calculated by counting fixed points of Frobenius. ...

§8. Newton polygons of abelian varieties over finite fields.

Given an abelian variety X over a finite field I, with ¢ = p™ we can look at the Newton

polygon of the characteristic polynomial fx = 729 + ...+ p™J = Hfi 1 (T — ;) of Frobenius.

To interpret this geometrically we consider the Witt ring W (F,) = Z,({;—1) (=unique complete
discrete valuation ring which is absolutely unramified and has [, as its residue field). Suppose
the a; lie in a ring W (F,)[p'/¢] for some e > 1. We write

ord(a;) =me;  with 0 < ¢; < 1.
Moreover, we set
re = #{a;: ord(ey;) = ¢} and ne = cre, Me = e — Ne.

The the following theorem of Manin (cf [Ma]) explain the geometric significance of the numbers
C;
(16.76) Theorem. The formal group of the abelian variety A is of the form

roG1,0 + Z (Gneyme + Gmen,) + %T%Gl,b

0<c<%
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Example. (cf [Ta]) Let ¢ = p™ and choose integers n and n’ with 0 < n <n’ and m =n +n'.
Let 7 be a root of 72 + p"m 4+ p™ = 0 . Then 7 is a imaginary quadratic Weil number with
respect to ¢ and p splits as p = pp’ in Q(7). A corresponding abelian variety A (by (11.16) has
dimension m and the invariants of E° are n/m and n’/m. One can show that A remains simple
over Fq. We find that the formal group is Gy, X Gy . The formal group G1,; can be obtained
from the Weil number /—p. (So all these formal groups are algebraic.)

§9. Ordinary abelian varieties over a finite field.

Recall the definition of ‘ordinary abelian variety’.

(16.77) Definition-Proposition. An abelian variety X of dimension g defined over a finite
field k of characteristic p is called ordinary if one of the following equivalent conditions is fulfilled.
i) The p-rank of X is g,i.e., #X[p](k) = p7.
ii) Verschiebung V: X?) — X is an étale map.
iii) The induced action F*: H' (X®) Oy )) — H'(X,Ox) is invertible.
iv) ker(F) is a multiplicative group scheme.
v) Half of the 2g roots of the characteristic polynomial fx of Frobenius m are p-adic units.

If one looks at the Newton polygon of the characteristic polynomial fx then on the one end
of the spectre one finds the supersingular abelian varieties and at the other end the ordinary
abelian varieties. These abelian varieties show the strongest resemblance to abelian varieties in
characteristic zero. For example, the endomorphism rings of simple ordinary abelian varieties
similar to those of complex abelian varieties.

(16.78) Proposition. Let X be a simple ordinary abelian variety over a finite field k with
corresponding Weil number w. Then F = Q(rn) has no real primes and End)(X) = F is
commutative. Moreover, fx is irreducible.

Proof. As we saw in ‘ExaEndFF’ the occurrence of a real prime of F' implies that X is a
supersingular elliptic curve or an abelian surface that over a quadratic extension k&’ of k becomes
a power of a supersingular elliptic curve over k’. Therefore F' is a CM-field. By 77 = ¢ we see
that in ||7||, = ¢~ the exponent i, is an integer for all v|p. By Theorem ‘EndFF’ it follows that
Endy(X) = F, hence is commutative. The irreducibility of fx follows immediately. O

If X is an ordinary abelian variety of dimension g over the finite field k£ then the Tate
module T,(X) = Hom(Q,/Z,, X (k)) is non-canonically isomorphic to ZJ. We shall denote it
here by T} (X) and we use the notation 7}/(X) for the dual of T} (X*), i.e.,

T} (X) := Homg, (T (X"), Tp(Gn)),

where we may write Z,(1) for the Tate module of the multiplicative group G,,. We thus
obtain two free rank g lattices over Z, associated to X. We put V;(X) = T;(X) ® Q, and
V) =T(X)®Q,

Ordinary abelian varieties can be lifted in a canonical way to characteristic zero. Indeed,
recall there is a general Serre-Tate theorem which says the following.
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Let R be any artinian local ring with algebraically closed residue field k of characteristic p.
Then the functor
{abelian schemes over R} —

— { ab. schemes over k plus lifting of their p — divisible groups to R}

given by
X/R— (X @k, X[p™])

is an equivalence of categories, see [ ]. So to lift an abelian variety X/k to R we must lift its
p-divisible group. For an ordinary abelian variety the p-divisible group is canonically a product

X[p™] = X x (T,(X) ®z, (Qp/Zp)) (14)

of its connected and étale part. We can lift both factors separately:

A~

X = (up=)?s Tp(X) = (Qp/Zy)*

and take the product again. A general lift of (*) will combine both factors, more precisely, given
a lift of (14) we find a pairing
X x T,(Xt) = Gp.

For an ordinary abelian variety X the canonical lift X is the unique lift to the Witt ring
W = W (k) such that each endomorphism of X lifts to an endomorphism of X.

(16.79) Lemma. Let X be an ordinary abelian variety over k. Then the finite subgroup
schemes of X are in 1 — 1 correspondence with the sublattices R C A(X) such that

R®Zy=(R®Zy) NV, + (RRZy,) NV,)).

In particular, ker(F) corresponds to the sublattice A®) of A(X) which is p-isogenous to A and
satisfies ..

Using this Deligne has given a characterization of the category of ordinary abelian varieties
over F,. Let ¢: W — C be a chosen embedding.

(16.80) Theorem. The functor X +— (A(X),F), with A(X) = Hy(A ®, C,Z) and F the
endomorphism induced by Frobenius on A(X), is an equivalence of categories between the cat-
egory of ordinary abelian varieties over IF, and the category of free Z-modules of finite type
satisfying the following conditions

i) F is semi-simple with eigen values of absolute value q'/2,

ii) There is a decomposition A(X) ® Z, = T, © T, of Z,[F]-modules of the same dimension
such that F|T, is invertible, while F|T;' is divisible by q.
Proof. If X is an abelian variety over k = F, then the operator F' on A(X) is semi-simple and
has eigenvalues of absolute value ¢'/2 by the Hasse-Weil Theorem ‘Hasse-Weil’.

We now first show that the functor is fully faithful, i.e., that for two abelian varieties X3

and X5 defined over k the natural map

¢: Homy (X1, Xo) — Homp (A(X1), A(X2))
is an isomorphism. After tensoring with Z; we obtain a map
Yy Homk(Xl,Xg) ® ZLi — HOIHF(A(Xl),A(XQ)) ® 7y,
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and the latter RHS can be identified with Hom g (7(X1),T¢(X2)).By Tate’s Theorem 16.20 it
follows that v¢; ® Qis an isomorphism for [ # p. Since Homy (X7, X5) is torsion-free we conclude
that 1 is injective. We shall show that the co-kernel of ¢ is torsion-free by showing that if
¢: X1 — Xy is a homomorphism such that the induced map A,: A(X;) — A(X3) is divisible
by a natural number n then ¢ is also divisible by n in Endy (X, X2). If A, is disible by n then
the induced map on the canonical lifts (X; /E)C is also divisible by n, hence also the induced
map ¢ between the corresponding generic fibres of the p-divisible groups X;[p>°]. But the kernel
of multiplication by n is a flat group scheme over the Witt ring W (k) it follows that ¢ is also
divisible by n, and so is . This proves that the functor is fully faithful.

The functor A induces a functor Ag from the category of abelian varieties over k up to
isogeny to the category V of Q-vector spaces of finite dimension with a semi-simple operator
F such that its eigenvalues are of absolute value ¢'/? and half of these are p-adic units. Now
then Theorem of Honda and Tate 16.41 shows that Ag is essentially surjective: if (V,F) is
a simple object in the category V then there exists an abelian variety X over k such that the
characteristic polynomial F'x of Frobenius is a power of that of F'. Clearly, X is ordinary then and
(A(X)®Q, F) is a sum of copies of (V, F'). The fact that our functor is fully faithful now implies

X is up to isogeny a power of an abelian variety Y defined over k with (A(Y)®Q, F) = (V, F).

Exercises.

(16.1) Let C be a smooth irreducible projective curve defined over a finite field k. Prove the
identity of formal series

o tn o0 .
exp [z_:l #C(Fqn)g] = z_:oDnt ,
with D,, the number of effective divisors of degree n on C' which are defined over k.

(16.2) Let C' be a smooth irreducible projective curve defined over a finite field F,. Use
#C(F,) < #C(Fg2) and Cauchy-Schwartz for the roots a; of fj.c(c) to prove that

#C(Fy) <g+1= [(\/(&1 +1)g% +4(¢* — q)g — g) /2} :

Conclude that for g > (¢ — ,/g)/2 this is a better bound than the Hasse-Weil bound.

(16.3) Let X be a supersingular elliptic curve defined over the prime field F,. Prove that
End(X) # End(XFp).

(16.4) Let X be an abelian variety over a finite field k. Let ¢ be a prime number, ¢ # char(k),
and consider the f-adic representation p,: Gal(k/k) — GL(V,X).
(i) Show that the map py is continuous, where we give the Galois group the Krull topology and
GL(V,X) the f-adic topology.
(ii) Show that Im(p,) is the closure of the subgroup (mx) C GL(V;X) generated by mx.
(iii) Show that Q, [Im(pg)] , the Qg-subalgebra of End(V, X) generated by the image of py, equals
Q¢[mx], the subalgebra generated by V(7x).

(16.5) Let X be a simple abelian variety with characteristic polynomial fx. Prove that the
following are equivalent.
(i) fx is irreducible.
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(ii) F has no real primes and for all v|p we have inv,(F) =0 in Q/Z.
(iit) End?(X) is commutative.

(16.6) Prove the assertion stated in (‘qWeilnrs’): An algebraic integer 7 € Q is a g-Weil
number if and only if either ¢ = £,/q or 7 is a root of T? — aT + q where a is an algebraic
integer such that Q[a] is a totally real field in which a? — 4q is totally negative.

(16.7) Let ¢ = p™ be an odd power of a prime, b € Z with b*> —4q < 0 and F = Q(1/b% — 4q).
Prove that p ramifies or splits in F. Prove moreover that p ramifies if and only if i) b = 0 or ii)
b= 4p™*t1/2 and p =2 or 3.

(16.8) Let ¢ = p™ be an even power of a prime, b € Z with b*> —4¢ < 0 and F = Q(1/b? — 4q).
1) Prove that p stays prime if and only if i) b = 0 and p = 3(mod4), or ii) b = +,/q and
p =2 (mod 3).
ii) Prove that p ramifies if and only if i) b =0 and p =2, or ii) b = /g and p = 3.

(16.9) Let m be the Weil g-number of an elliptic curve X over F,. Show that some power of 7
is equal to a power of p if and only if X is supersingular.

(16.10) Let X be an abelian variety over a finite field k, and let R := End(X). Let I be a left
ideal of finite index of R and let J be a left ideal of finite index in End(X;). Prove that we may
view IJ as a left ideal of R and that X;; = (X); canonically.

(16.11) Let t € Z and let N(q,t) be the number of F,-isomorphism classes of elliptic curves
over F, with trace of Frobenius ¢ (equivalently with #X (F,) = ¢+ 1—t). Define a class number
by H'(A) =", h(A/d?), where the sum is over d € Zs such that A/d? is integral and = 0 or
1 mod 4). Prove the following formulas for N(g,t).

(g,t) = H’(t2 4q) if t # 0(modp).

N(q,0) = H'(—4p) if ¢ is a not a square.

(q,0)=1-— (_74) if ¢ is a square.

(¢.£y/pPq) =1if p=2or p=3 and q is not a square.

(¢.£yq) =1- (_—) if ¢ is a square.

(

N(q,+£2\/q) = 15 <p+6—4(_7)—3(_7)) if ¢ is a square.
vi) N(q,t) = 0 otherwise.

(16.12) 1) Show that } >y 1/#Autg, (X) = ¢, where the sum is over all Fy-isomorphism classes
of elliptic curves defined over F,. 2) Let p be a prime. Prove the Hurwitz class number relation
>, H(4p — t?) = 2p, where the sum is over all ¢ € Z with t* < 4p and 4p — t* = 0(modp).

(16.13) Prove the following formula for the trace of the Hecke operator on the space of cusp
forms of even weight k£ > 4 on SL(2,Z).

TSm0

T 2 k—1 _
vt Fhuts,(X)

X/F,2,up to %sz
where the sum is over the F-isomorphism classes of elliptic curves X defined over [F)»

(16.14) Check the following table of frequencies for elliptic curves over F49. Here the frequency
f(t) is defined as f(t) = >y 1/#Autr,, (X) with the sum over all [X] with #X (Fs9) =50 —¢
for k = F49.
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t 0| +1 +2 | £3 | £4 | £5 | £6 | £7 | £8 | £9 | £10 | £11 | £12 | £13
fl11/2 21 11/3 1 315/2 3 2 1 3| 7/6 112/3 1/4

exercise for endo-chapter
Ex:G1G2 (16.15) Let X be an abelian variety defined over a field k£ and let G; and G2 be two finite
subgroup schemes of X defined over k. Suppose that X/G; = X/G5. Prove that there exists
an isogeny p € End(X) of X and an integer N € Zs such that p~'(G1) = Nx'(Ga).

Notes. Although Galois introduced finite fields in the 1830’s it took a long time time before curves and abelian
varieties over finite fields were seriously studied. Artin in his 1924 thesis considered the zeta function for hyper-
elliptic curves over a finite field IFy, defined by an Euler product as an analogue of the Dedekind zeta function for
number fields and proved that after the substitution ¢ = ¢~ ° one obtains a rational function Z¢ (t) which satisfies
a functional equation. Artin formulated an analogue of the Riemann hypothesis, namely that the zeros of Z¢ (t)
have absolute value g~ 1/2. In 1931 F.K. Schmidt reformulated Z¢ (t) as the generating series as in ‘GenSer’ and
deduced the functional equation from the Riemann-Roch theorem. Around 1932 Hasse observed the Riemann
hypothesis proposed by Artin implies a bound on #C(F4). Two years later he proved that bound for elliptic
curves making use of correspondences and endomorphisms. Deuring observed that in order to extend Hasse’s
proof to higher genus one needed a theory of correspondences in arbitrary characteristic. Weil developed such a
theory and proved the Riemann hypothesis of Artin in 1940 by deducing it from an inequality on correspondences
(the positivity of the trace) due to Castelnuovo and Severi. These results inspired Weil later to make his famous
conjectures about the zeta function of a complete smooth variety over a finite field.

An elementary proof of the Hasse-Weil Theorem for curves bound using only Riemann-Roch was given
much later by Stepanov, see Bombieri 1. Serre’s improvement of the Hasse-Weil bound in Serre 5 stems from
1983. Improvements of the Hasse-Weil bound for curves in case g is large with respect to q are due to Ihara and
Drinfeld and Vladuts, see Exercise 16.2 and Vladuts and Drinfeld [1].

The central theorem relating homomorphisms of abelian varieties to the Galois-equivariant homomorphisms
between their Tate modules is due to Tate [1], who in his proof generalized an argument of Deuring following a
suggestion by Lichtenbaum. The extension to the case | = p was promised in an Inventiones paper, toujours a
paraitre. A proof was given in Milne and Waterhouse [1]. They also wrote down Tate’s proof for the invariants
of the endomorphism ring in the Brauer group which Tate indicated in Tate [1]. Honda proved in Honda [1] that
every Weil g-number occurs as the conjugate of Frobenius for a simple abelian variety over F;. Together with
Tate’s theorem it put the isogeny classes of abelian varieties over F, in bijection with the Weil g-numbers.

Deuring classified the endomorphism rings of elliptic curves in Deuring 1 but he looked at End(X). Wa-
terhouse extended some of Deuring’s results to higher dimension in 1. The construction of abelian varieties
isogenous to a given one by using ideals of the endomorphism ring is due to Shimura and Taniyama 1. Serre gave
a different interpretation of it in 3 and 4.

The description of the category of ordinary abelian varieties over a finite field given above is due to Deligne
2.
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Appendix A. Algebra.

References are given at the end of the appendix.

(A.1) All rings considered here are assumed to have an identity element, and homomorphisms
f: R — Ry are required to send 1 € Ry to 1 € Rs.

As we shall consider noncommutative rings, we need to distinguish between left and right
modules. We adopt the convention that “module” means “left module”, unless we explicitely
call it a right module. Note, however, that unless stated otherwise, by an ideal in a ring we shall
mean a two-sided ideal.

If Ais aring then A°PP denotes the opposite ring and Z(A) denotes the center of A. Further,
for a nonnegative integer r we denote by M,.(A) the ring of r X r matrices with coefficients in A.

Let A be a ring, M a left A-module. We say that M is an irreducible (or simple) A-
module if M # {0} and M has no A-submodules other than {0} and M. We say that M is a
semisimple A-module if every A-submodule of M is a direct summand. This is equivalent to
the condition that M is a direct sum of a collection of simple A-modules. Note that the zero
module is semisimple but not simple; by convention it is the direct sum of the empty collection
of A-modules.

A nonzero ring A is called simple (as a ring) if {0} and A are the only two-sided ideals
in A. A ring A is called semisimple if every left A-module is semisimple. This is equivalent to
the condition that A is semisimple as a left module over itself. A semisimple ring A has finitely
many minimal nonzero ideals; call these Aq,..., A,.. Each A;, viewed as a ring, has an identity
element making it a simple ring, and A is isomorphic to the product A; x --- x A,.. So every
semisimple ring is a product of finitely many simple rings. Conversely, every finite product of
simple rings is semisimple.

If A is a semisimple ring then every left ideal I C A (resp. right ideal J C A) is generated
by an idempotent, i.e., there is an idempotent e € A with I = Ae (resp. J = eA). Indeed,
because A is semisimple as a left (resp. right) module over itself there exists a left ideal I’ (resp.
right ideal J') such that A = I @ I’ as left A-modules (resp. A = J @& J' as right A-modules);
writing 1 = e + €’ one easily finds that e is an idempotent and I = Ae (resp. J = eA).

If A is a simple ring then up to isomorphism there is a unique simple A-module. It follows
from the previous that over a semisimple ring there are finitely many simple modules, up to
isomorphism; one corresponding to each simple factor A;.

Let A be a simple ring, M a simple A-module. Then A, viewed as a left module over itself,
is of finite length r; hence it is isomorphic to M". The ring D := End4(M)°PP is a division
algebra and M has dimension r as a right module over D. For a € A write aj; € Endp (M) for
the map m +— am. By the Bicommutant Theorem, see (A.2) below, the homomorphism a +— a,;
gives an isomorphism of the ring A with the ring Endp (M), and the latter ring is isomorphic
to the ring M, (D) of r x r matrices over D. So the conclusion is that every simple ring A is
isomorphic to a matrix ring over a division algebra. In particular, Z(A) = Z(D) is a field.

Conversely, if D is a division algebra and r is a positive integer, M,.(D) is a simple ring.
The unique simple module over this ring is given by D" with its natural structure of a left
M,.(D)-module.

App.Algebra, 8 februari, 2012 (635)
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It follows from the previous results that if A is a simple ring, so is A°PP.

(A.2) Bicommutant Theorem. Let A be a semisimple ring, and let M be an A-module
of finite type. Let C := Enda(M), and consider M as a left module over C' by the rule
c¢-m = c(m) for c € C and m € M. Then the map A — End¢ (M) that sends a € A to the map
apr € Ende (M) given by m +— am is an isomorphism.

(A.3) Skolem-Noether Theorem. Let A be a simple algebra with center K. Let B and B’ be
simple K -subalgebras of A of finite dimension over K. Then for every isomorphism ¢: B — B’
of K-algebras there is an inner automorphism v of A with ¢ = .

In particular, if A is a simple algebra of finite dimension over its centre K then all auto-
morphisms of A over K are inner, so Autg(A) = Inn(A) = A*/K*.

(A.4) Let K be a field. By a K-algebra we mean a ring A together with a homomorphism K —
Z(A), called the structural homomorphism. A K-algebra A is called a central simple algebra
over K if A is a simple ring and the structure homomorphism K — Z(A) is an isomorphism.
As we have seen, any such A is of the form M,.(D) for some division algebra D with center K.

Let D be a division algebra with center K such that dimg(D) < co. If K C K is an
algebraic closure of K then K ®x D = M, (K) for some n € N. It follows that any central
simple K-algebra A of finite K-dimension is a K-form of a matrix algebra; by this we mean that
K ®p A is isomorphic to a matrix algebra M,,(K) over K. In particular, dimg(A) = m?
square. The integer m is called the degree of A. Conversely, any K-form of a matrix algebra is

is a

central simple over K.

Let A and A’ be two central simple K-algebras of finite K-dimension. We call A and A’
Brauer equivalent if there exist a central simple K-algebra D and two natural numbers r and
s such that A = M,.(D) and A" = My(D) as K-algebras. This is equivalent to the condition
that there exist positive integers ¢ and u such that M;(A) = M, (A’) as K-algebras. The Brauer
group of K, denoted Br(K), is defined as the set of equivalence classes of central simple K-
algebras of finite K-dimension. It has the structure of a commutative group, with group law
defined by [4] - [A'] .= [A®K A'].

If A is a central simple K-algebra of finite K-dimension then the same is true for A°PP and
the class of A°PP is the inverse of the class of A. This corresponds to the fact that A ® g A°PP =
M,2(K) if dimg (A) = n.

Let D be a division algebra with center K with dimg (D) < oco. By definition, the index
of D is its degree. If A is a central simple K-algebra with A = M, (D) for some r then by
definition index(A) := index(D), and so deg(A) = r - index(A). The order of [A] in Br(K) is
called its period. It is always true that the period divides the index, but in general the two need
not be equal. However, if K is a number field or a local field then the period of a central simple
K-algebra equals its index.

Let K C L be a field extension. If A is a central simple K-algebra then Ay := L ®x A
is a central simple algebra over L. Sending [A] to [AL] gives a well-defined homomorphism
hi,r: Br(K) — Br(L). We say that L splits A, or that L is a splitting field for A, if Ay, is
isomorphic, as an L-algebra, to a matrix algebra M, (L), or, equivalently, if the class [A] is in
the kernel of the homomorphism hg 1. If A = M, (D) for some division algebra D then A and D
have the same splitting fields. Further, if L C D is any maximal subfield containing K then L
is a splitting field for D, and [L : K] = index(D). Conversely, if K C L is a finite field extension
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then L splits the central simple algebra A if and only if there is an A’ that is Brauer-equivalent
with A such that L is isomorphic to a maximal subfield of A’. If this holds then [L : K] is a
multiple of index(A), and in fact A’ can be chosen such that [L : K] equals the degree of A’.

The Brauer group of a field can also be studied via Galois cohomology. In fact, if K C K
is a separable algebraic closure then Br(K) — H?(Gal(K,/K),K}). If K C L is a Galois
extension with L C K, then the image of H?(Gal(L/K),L*) in Br(K) equals Br(L/K) :=
Ker(hg,: Br(K) — Br(L)), the subgroup of classes that are split by L.

(A.5) Let K C L be a Galois extension of finite degree m such that Gal(L/K) is cyclic. Let
o € Gal(L/K) and let y be an element of K*. Consider the ring L[t; o] of polynomials in the
variable ¢ with coefficients in L and with ring multiplication satisfying ¢ - a = o(a) - t for all
a € L. (Cf. 77) The polynomial ¢ — y lies in the centre of this ring, so it generates a 2-sided
ideal. The cyclic algebra associated to chosen data, notation (L/K, o,y), is defined to be the
K-algebra L[t;o]/(t"™ —y). So, more informally, (L/K,o,y) can be described as the ring that is
obtained by adjoining to L an element ¢ subject to the relations ¢t - a = o(a) - t and t™ = y.

It can be shown that (L/K, o,y) is a central simple K-algebra of degree m, and that L
is a maximal subfield of A. In particular L is a splitting field. Conversely, if A is any central
simple K-algebra of degree m that contains a subfield isomorphic to L (as a K-algebra), then
A is isomorphic to (L/K,o,y) for some y € K*.

We have (L/K,0,y) = (L/K,o,y") if and only if 4/ /y € Normy x (L*). Further, if v € Z is
relatively prime with m then (L/K,o,y) = (L/K,0",y"). Fixing a generator o for Gal(L/K)
it follows that Br(L/K) = K*/Norm(L*).

(A.6) If K is a finite field extension of Q, for some p then we have Br(K) = Q/Z. To avoid
confusion (especially about signs), let us make the isomorphism that we use explicit. Given
a natural number n, let K C L be the unramified extension of degree n, which is unique
up to isomorphism. Let ¢ = p™ be the cardinality of the residue field of K. The Galois
group Gal(L/K) is cyclic of order n and there is a unique generator o,k that induces the
automorphism z — 7 on the residue field of L. We refer to o,k as the arithmetic Frobenius
of the extension K C L. Concretely, if Ky C K is the maximal absolutely unramified subfield
then K is isomorphic to the fraction field of W (F,) and L = W (F¢») @y (r,) K. Under such an
isomorphism o,/ corresponds to 0™ ® idx, where now ¢ is the automorphism of W (IF,) that
is induced by the Frobenius automorphism x — 2P of IF,.

Now we take the automorphism Br(K) — Q/Z such that the Brauer class of a cyclic
algebra (L/K,0p,k,y) is mapped to the class of ord(y)/n in Q/Z. Note that the isomorphism
we use is minus the isomorphism found in some literature; cf. Serre [2], Chap. X, § 5, Exerc. 1
for instance.

Next we consider a number field K. The determination of its Brauer group also involves the
Brauer groups of all completions of K. If v is a non-archimedean place of K with completion K,
(a p-adic field) then as just discussed we have Br(K,) — Q/Z. If v is an infinite place then the
completion K, is either R or C. We have Br(C) = 0 and Br(R) = 1Z/Z. So all local Brauer
groups can be identified with subgroups of Q/Z. (This is the reason for writing Br(R) as 1Z/Z.)
If A is a central simple K-algebra of finite K-dimension then K, ® A is a central simple K-
algebra, and we write inv, (A) € Q/Z for the corresponding class. Here it is of course understood
that inv,(4) = 0 if K, = C and inv,(A) € 1Z/Z if K, = R. Then the map A — (inv,(A))
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gives an isomorphism
Br(K) > {(iv) e PBr(K,) ( S iy = o} , (1)
v v
where the sum runs over all places v of K.

(A.7) Let A be a central simple algebra over a field K. Choose a splitting field K C L for A and
choose an isomorphism of L-algebras ¢: L @ A — M, (L). If a € A then the characteristic
polynomial det(T — ¢(1 ® a)) € L[T] of the matrix ¢(1 ® a) has coefficients in K and is
independent of the choices of the splitting field and the isomorphism ¢. We call this polynomial
the reduced characteristic polynomial of a over K and denote it by Prd, k. € K [T]. Write

Prdg p, =T" — 17" '+ 5T" 2+ 4 (=1)"s,

with s; € K. Then Trd s,k (a) := 51 is called the reduced trace of a over K and Nrd 4,k (a) := s,
is called the reduced norm of a over K.

Let Aq: A — A be the left multiplication by a, i.e., the map given \,(b) = ab. Then )\, is
a K-linear endomorphism of A. Its characteristic polynomial P(\,) := det(T — \,) € K[T] is
related to the reduced characteristic polynomial by

P(/\a) = (PrdA/K,a)n .

In particular, det(\,) = (NrdA/K(a))n and tracex (A\q) = n - Trda/k(a).
If F C K is a subfield with [K : F] < oo then we define the reduced trace and norm of a
over F' by

Trds,p(a) := traceg (TrdA/K(a)) and Nrd4/p(a) := Normg/p (NrdA/K(a)) .

For a1, a; € A we have Trdy p(araz) = Trda/p(az2a:) and Nrd 4 p(araz) = Nrdy p(ar) -
Nrd4,r(as2).

(A.8) By an involution of a ring A we mean an anti-homomorphism o: A — A such that
oo0 =1id4. Note that o can also be viewed as a homomorphism A — A°PP. We also note that
in some literature this is called an anti-involution. We shall usually denote an involution as a
map a — a* or a— al.

Let A be a central simple algebra over a field K. Let 0: a — a* be an involution on A. We
say that the involution o is of the first kind if it is the identity on the center, i.e., * = x for all
x € K, and that o is of the second kind otherwise. In the latter case, o gives an automorphism
of order 2 of K and we write K¢ := {x € K | * = x} for its fixed field.

As an example, suppose that A is a quaternion algebra over K, i.e., a division algebra with
center K and dimg(A) = 4. Then the map a +— a* := Trds/x(a) — a is an involution of the
first kind on A, called the canonical involution.

Consider a central simple algebra A over a number field K. A necessary and sufficient
condition for an involution of the first kind to exist, is that A = A°PP as K-algebras. This is
equivalent to the condition that inv,(A) € {0,1/2} for all places v of K. If inv,(A) = 0 for
all v then A is a matrix algebra over K and transposition of matrices gives an example of an
involution of the first kind. Assume now that inv,(A) € {0,1/2} for all v and that there is at
least one v with inv, (A) = 1/2. (In fact, it follows from (1) that there are then at least two
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places v with inv,(A) = 1/2.) Then A is isomorphic to a matrix algebra over a quaternion

algebra, say A = M, (D).

(A.9) Let K be a field. Let A be a central simple K-algebra of finite K-dimension. Let a +— a*
be an involution on A. Finally, let ¢ € {—1,1}.

Let V be a finitely generated A-module. By an e-hermitian form on V with respect to the
involution *, we mean a bi-additive map

hVxV—-A

such that

(1) h(av,bw) =a - h(z,w)-b* for all a, b € A and v, w € V;

(2) h(w,v) =¢-h(v,w)* for all v, w € V.

A 1-hermitian form is often simply called hermitian; a —1-hermitian form is also called a skew-
hermitian form.

If V is a finitely generated A-module then V'V := Hom4(V, A) has the same K-dimension
as V. To see this we can easily reduce to the case where V' is simple, i.e., V= A/I for some left
ideal I C A. Asdiscussed in (A.1) there are idempotents e and e’ with 1 = e4¢’ and I = Ae; this
gives VV 2 {a € A|ea=0} = A= eA\A. Now consider the subfield Ky = {z € K | 2* = =}
of K, and note that we have a K-linear bijection A/Ae — eA\A by a mod Ae +— a* mod eA.
Hence dimg (V) = dimg (VY).

We give V'V the structure of a left A-module structure by the rule (a-¢)(v) = ¢(v) - a*, for
p € VYV and a € A. There is a natural homomorphism of A-modules : V' — (VV)V, sending
v € V to the evaluation map ev,: V¥V — A. The map k is readily seen to be injective, so for
dimension reasons it is in fact an isomorphism.

An e-hermitian form h on V gives rise to a homomorphism of A-modules h: V — VY by
v — h(v,—). The form h is called nondegenerate if h is injective, i.e, if for every v € V there
exists an element w € V such that h(v,w) # 0. If h is nondegenerate then, again by a dimension
count, h is an isomorphism. Hence we can define an involution f — f on End A(V) by the
rule f1 = h=1o fVoh, where we write fV: VV « VV for the dual of the map f: V — V. By
construction we have the relations

h(flo,w) = h(v, fw)  and  h(fv,w) = h(v, flw)

for all v, w € V.

(A.10) Proposition. Let A be a central simple algebra of finite dimension over a field K. Let
a +— a* be an involution on K. Let V be a finitely generated A-module.

(i) Suppose * is of the first kind. Then the map that associates to an e-hermitian form h
on V the involution f — fi =h=LefVeoh on Enda(V) gives a bijection

~

nondegenerate
+-hermitian forms on V ) — {

involutions of the first kjnd}

End
up to homothety on Enda(V)

(ii) Suppose * is of the second kind. Then the map that associates to an e-hermitian form h
on V the involution f +— f' = h=le fVoh on End4 (V) gives a bijection

nondegenerate involutions | of the second kind
hermitian forms on V. 3 on End (V)
up to homotheties in K with ft = f* forall f € K
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The hermitian forms on V' that we consider here are of course understood to be hermitian
with respect to the given involution * on A. Note that in (ii) we only consider +1-hermitian
forms. This is no restriction of generality, since by choosing an element o € K with a* = —«
we obtain a bijective correspondence h — « - h between hermitian and skew-hermitian forms.

(A.11) Let (K, >) be an ordered field. (The most relevant examples for us are K = Q and
K =R.) Let A be a finite dimensional semisimple K-algebra. An involution a — a* on A is
called a positive involution if Trd 4,k (aa®) > 0 for all nonzero a € A.

Let V be an A-module, and consider a hermitian form h: V x V — A with respect to
the involution *. Then the form A is said to be positive definite (over the ordered field K) if
Trd s xh(v,v) > 0 for all nonzero v € V.

(A.12) Proposition. Let A be a finite dimensional semisimple R-algebra. Let a — a* be an
involution on A. Then the following properties are equivalent.
(1) The involution * is positive.
(2) There exists a finitely generated faithful A-module V' and a positive definite hermitian form
h: V xV — A with respect to *.
(3) For every finitely generated A-module V' there exists a positive definite hermitian form
h: V xV — A with respect to .
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