
Solutions Test Riemann Surfaces

—

1. If f : X → C is a holomorphic map then consider the holomorphic function
g = e−2πif . Apply the maximum principle to g.

2.
i) In order to find for a general point w ∈ C the fibre π−1(w) we must solve the

equation z2 + 1/z2 = w, that is z4 −wz2 + 1 = 0. Since this is a degree 4 equation
we find for general w four solutions, hence the degree of π is 4.

ii) We begin by remarking that z 7→ 1/z and z → −z are automorphisms of P1 which
commute with π. So the group Z/2 × Z/2 acts on the fibres of π. Moreover by
using (z, w) 7→ (iz,−w) we see that the ramification behavior in the fibre over w is
the same as for −w.
The branch points over w ∈ C ⊂ P1 occur if the equation z4 − wz2 + 1 = 0 has

coinciding roots. Also w = ∞ can be a branch point.
Viewing the equation as a quadratic equation in z2 the case of coinciding roots

happens if the discriminant w2 − 4 vanishes, that is for w = ±2. So these are the finite
branch points. For w = ∞ we must have z = 0 or z = ∞ and thus it is a branch point.
iii) We first deal with the ramification index near z = 0. Change coordinates by putting

w = 1/u. Then we get uz4 + u − z2 = 0, that is, u(z4 + 1) = z2. Since z4 + 1 is
invertible near z = 0 it is clear that the ramification index is 2. (We can find a
holomorphic function h near z = 0 such that h2 = 1 + z4 and then we replace z by
z/h such that the local form of the map becomes z 7→ u = z2.)
For the points over w = 2 we have the equations z2 = (w ±

√
w2 − 4)/2 from

which it follows that z = ±1 are the solutions. This clearly shows that the ramification
index is 2 for z = 1 and z = −1 over w = 2. So the fibre type over all branch
points is 4 = 2 + 2. (This checks with the genus in the Hurwitz-Zeuthen formula:
−2 = 4 · (−2) + 1 + 1 + 1 + 1 + 1 + 1.)

3. Let π : X → Y be a holomorphic map of compact Riemann surfaces of degree d.
Then 2g(X)− 2 = d(2g(Y )− 2) + b, where b =

∑

P∈X(rP − 1) with rP the ramification
order at P .
Proof. Let P be a point of X with image Q = π(P ). Then we can find local coordinates
at P and Q, say z and w, such that π locally at P is given by z 7→ zr = w. If ω is a
meromorphic differential form on Y such that ω = f(w)dw near Q then π∗(ω) is of the
form f(zr)d(zr) = r f(zr)zr−1dz near P and hence

ordP (π∗(ω)) = rordQ(f) + (r − 1) = rordQ(ω) + (r − 1)



We know that if P1, . . . , Pt are the points of the fibre then π∗(Q) = r1P1 + . . . + rtPt,
with r1 + · · · + rt = d, hence

deg(div(π∗ω)) =
∑

Q

(

∑

P :π(P )=Q

rP ordQ(ω) + (rP − 1))

= d
∑

Q

ordQω +
∑

P∈X

(rP − 1)

= d(2g(Y ) − 2) + b

4.
i) To show that the short exact sequence of sheaves is exact we need to prove exactness

at the stalks. For any open U we have an embedding C(U) ⊂ E(U). This implies
that we have an injective map Cx → Ex on the stalks. The kernel of d on E(U)
consists of the constant functions. Since d · d = 0 it follows that dE(U) consists of
closed forms. Furthermore, let x ∈ X . Near x every closed 1-form ζ can locally be
written as df for some function f ∈ E(V ) on a sufficiently small neighborhood of
x. This shows that d is surjective on the stalk Z(U).

ii) We now form the long exact cohomology sequence:

0 → H0(X, C) → H0(X, E) → H0(X,Z) → H1(X, C) → H1(X, E) = 0

where the last zero follows from the fact that E is fine. We can thus rewrite this
sequence as

0 → C → E(X)
d−→Z(X) → H1(X, C) → 0.

In other words we get the Theorem of de Rham:

H1(X, C) ∼= Z(X)/dE(X) = closed 1-forms modulo exact forms

5.
i) By Serre duality we have H1(X, OX(D))∨ ∼= H0(X, OX(K−D)) with K a canonical

divisor. The degree of K − D is negative, hence H0(X, OX(K − D)) = (0). We
used Serre duality

H0(X, Ω1
X(−D)) = H1(X, OX(D))∨

and the fact that H0(X, OX(D)) = (0) if deg(D) < 0. We also observe that
Ω1

X(E) ∼= OX(K + E) for any divisor E and canonical divisor K.
ii) We have H1(X, OX(D − P )) = (0) by i) since deg(D − P ) > 2g − 2. Hence we get

from the short exact sequence 0 → OX(D − P ) → OX(D) → F → 0 with F = CP

the skyscraper sheaf at P , the exact sequence

0 → H0(X, OX(D − P )) → H0(X, OX(D)) → C → 0

and this shows that the map is not surjective.
iii) If ordP (D) = nP then there exists an element f ∈ H0(X, OX(D)) which does not lie

in H0(X, OX(D−P )), and that means that ordP (f) = −nP . Then E = div(f)+D
is effective, linearly equivalent to D and has ordP (E) = 0.



6.
i) The space H0(X, OX(P )) contains the constant functions. Suppose that the space

H0(X, OX(P )) contains a non-constant function f . Then f defines a holomorphic
map f : X → P1 which is of degree 1 as f has 1 pole. Hence f is an isomorphism;
this contradicts the fact that g 6= 0.

ii) By Riemann-Roch we have

h0(K − P ) = h1(K − P ) + 1 + deg(K − P ) − g = h1(K − P ) + g − 2.

But by Serre duality h1(K − P ) = h0(P ) and this equals 1 as observed in i).
iii) By Riemann-Roch and Serre duality we have

h0(K − P − Q) =h0(P + Q) + (2g − 4) + 1 − g = h0(P + Q) + g − 3

h0(K − P ) =h0(P ) + (2g − 3) + 1 − g = g − 1

and we thus have h0(P + Q) = 2.
iv) Since dim H0(X, Ω1

X) = g and dim H0(X, Ω1
X(−P )) = h0(K − P ) = g − 1 there

exists a holomorphic 1-form that does not vanish at a given point P . Hence not
all elements ωi vanish at P . So the map π defined by x 7→ (ω1(x) : . . . : ωg(x)) is
well-defined.

v) If the map π is not injective then there exist distinct points P and Q such that if
ω vanishes at P it also vanishes at Q. But this means that H0(X, Ω1

X(−P −Q)) =
H0(X, Ω1(−P )). The result follows from iii).


