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OF THE HODGE BUNDLE ON THE MODULI SPACE
OF ABELIAN VARIETIES
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Abstract
We give a generalization to higher genera of the famous formula 12 λ = δ for genus 1.

1. Introduction
The fact that there exists a cusp form of weight 12 on SL(2, Z) with a simple zero at
the cusp and no zero on the upper half-plane translates into the cycle relation 12λ = δ

(in the Chow ring of the moduli space of semistable curves of genus 1). Here λ is the
divisor class corresponding to the factor of automorphy((

a b
c d

)
, z

)
7→ (cz + d),

and δ represents the class of the cusp. We wish to generalize this relation to a relation
in the Chow ring (but now with rational coefficients) of the moduli of principally
polarized abelian varieties. The analogue of the class λ is the top Chern class λg of
the Hodge bundle, and the analogue of δ is a codimension g class δg living on the
boundary of the moduli space. The analogue of the formula is then a relation of the
form

λg = (−1)gζ(1 − 2g) δg

with ζ(s) the Riemann zeta function. We now formulate a precise version of this.
Let Ag/Z denote the moduli stack of principally polarized abelian varieties of

dimension g. This is an irreducible algebraic stack of relative dimension g(g + 1)/2
with irreducible fibres over Z. The stack Ag carries a locally free sheaf E of rank g,
the Hodge bundle, defined as follows. If π : A → S is an abelian scheme over S with
zero section s, we get a locally free sheaf s∗�1

A/S of rank g on S. This is compatible
with pullbacks and gives E on Ag . The bundle �1

A/S is isomorphic to the pullback
under π of the Hodge bundle. The top Chern class λg(A/S) := cg(s∗�1

A/S) (in the
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Chow group of S) is then a pullback of a corresponding class in the universal case
λg := cg(E). The Hodge bundle can be extended to a locally free sheaf (again denoted
by E) on every smooth toroidal compactification ˜Ag of Ag of the type constructed in
[5, Chapter VI, Section 4] there. By a slight abuse of notation, we continue to use the
notation λg for its top Chern class.

The class λg is defined over Z, and for each fibre Ag ⊗k with k a field, it gives rise
to a class, also denoted λg , in the Chow group CHg(Ag⊗k) and in CHg( ˜Ag⊗k). It was
proved in [8] that λg vanishes in the Chow group CHg

Q(Ag) with rational coefficients;
however, it does not vanish on Ag ⊗ k, and in [2] we studied its order as a torsion
class. It also does not vanish in the Chow group CHg

Q( ˜Ag ⊗ k). Therefore one may
ask for an effective cycle representing the class λg on a compactification.

There are several compactifications of Ag . We let A ∗
g be the minimal or Satake

compactification as defined in [5]. This compactification A ∗
g is a disjoint union

A ∗
g = Ag t Ag−1 t · · · t A0.

If ˜Ag is a suitable smooth toroidal compactification as constructed in [5], we have
a natural map q : ˜Ag → A ∗

g to the Satake compactification. The moduli space A ′
g of

rank 1 degenerations is by definition the inverse image of Ag t Ag−1 ⊂ A ∗
g under

the natural map q : ˜Ag → A ∗
g . The important fact is that the space A ′

g does not
depend on a choice ˜Ag of (toroidal) compactification of Ag; it is a canonical partial
compactification on Ag . If we want a full compactification, then there is not really a
unique one, but we must make choices (see [15]).

The space A ′
g parametrizes semiabelian varieties with torus rank ≤ 1. We let 1g

be the irreducible closed locus of A ′
g which parametrizes the semiabelian varieties

that are trivial extensions

1 → Gm → X → A → 0

of a principally polarized abelian variety of dimension g − 1. Under the map q this
cycle is mapped to Ag−1 in the Satake compactification. We denote by δg the cycle
class in the sense of the Q-classes, [1g]Q, of this codimension g cycle in the Chow
group with rational coefficients of codimension g cycles on A ′

g . Note that for g > 1
(resp., g = 1), the generic semiabelian variety that is a trivial extension by a rank 1
torus has 4 (resp., 2) automorphisms, so 1g is counted with multiplicity 1/4 (resp.,
1/2). We refer to [11] and [12] for cycle theory on stacks, but see also [13], [16], and
[2]. We now can formulate our result.

THEOREM 1.1
In the Chow group CHg

Q(A ′
g ⊗ k) of codimension g cycles of the moduli stack of rank
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≤ 1 degenerations A ′
g ⊗ k, we have the formula

λg = (−1)gζ(1 − 2g) δg,

where δg is the Q-class of the locus 1g of semiabelian varieties that are trivial exten-
sions of an abelian variety of dimension g − 1 with Gm .

Recall that ζ(1 − 2g) is a rational number and equals −b2g/2g with b2g the 2gth
Bernoulli number.

Example 1.2
We have 12 λ1 = δ1, 120 λ2 = δ2, and 252 λ3 = δ3.

For g = 2 and g = 3, there is a canonical toroidal compactification ˜Ag of Ag ,
the Delaunay-Voronoi compactification. In [8], van der Geer obtained the following
formulas for δg: in the rational Chow ring of ˜Ag for g = 2 and g = 3,

δ2 = 120λ2 − σ2, δ3 = 252λ3 − 15λ2
1σ1 + 2λ1σ2,

where σi denotes a certain class of codimension i lying in the boundary. Our formula
gives the part that does not depend on the choice of compactification.

Just as in the case of curves, it is possible to introduce the tautological ring for
compactified moduli of abelian varieties. One simply takes the subring of the Chow
ring generated by the λi in a toroidal compactification (for which the Hodge bundle
has been given a toroidal extension). This is seen to be independent of the chosen
compactification, using [5, Chapter IV, Theorem 1.1] to reduce to the case when one
compactification is dominated by another and using the projection formula in that
case. Furthermore, its relations are easily specified without making reference to a
toroidal compactification (see Section 3). However, as in the case of curves, some-
times natural loci have classes in the tautological ring, and one then wishes to find
the corresponding formulas. This is somewhat problematic, particularly when these
classes lie in the boundary as it is not even clear that this question is independent of
the toroidal compactification. We suggest introducing instead the tautological module,
which by definition is the pushdown of the tautological ring to the Satake compacti-
fication. Note that as the Satake compactification is (highly) singular, the tautological
module is only a subspace of the (rational) Chow homology group (and not the Chow
cohomology ring). We end this paper by giving some examples of how to express the
classes of natural loci as elements of the tautological module.

2. The proof of Theorem 1.1
In order to prove Theorem 1.1, we may work on a level cover of the moduli space
A ′

g for some level n ≥ 3 prime to the characteristic of the field k and prove the
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corresponding relation λg = (−1)gζ(1 − 2g) n δ
(n)
g there. Here δ

(n)
g denotes the locus

of semiabelian varieties with level n structure which are trivial extensions of a (g−1)-
dimensional abelian variety by a rank 1 algebraic torus. This has the advantage that
we can avoid the problems due to the existence of automorphisms. In the proof we
then have to employ an index (n) for all objects. Having said that, we carry out the
computation by formally working in level 1 and assuming that the reader knows how
to interpret our identities.

In the computation we need a description of the space A ′
g . We assume that the

reader is familiar with the construction of toroidal compactifications of Ag . It might
help the reader to have a look at Mumford’s paper [15], where the moduli space of
rank 1 degenerations is used. Using the natural map q : A ′

g → A ∗
g , an étale cover

of the divisor Bg := A ′
g\Ag can be identified with the dual of the universal family

X̂g−1 → Ag−1, and using the principal polarization, it can be identified with the
universal family Xg−1 → Ag−1. The cycle 1g has as support the image of the zero
section s : Ag−1 → X̂g−1.

We recall how a point of X̂g−1 determines a semiabelian variety. If Z is a princi-
pally polarized abelian variety of dimension g − 1 with theta divisor 4, then the dual
abelian variety Ẑ classifies semiabelian varieties that are extensions of group schemes

1 → Gm → G → Z → 0

of Z by Gm . Since the polarization defines an isomorphism Z → Ẑ , we can asso-
ciate a semiabelian variety to a point z ∈ Z . We may view this Gm-extension as a
Gm-bundle over Z , and we can take the corresponding P1-bundle ρ : G̃ → Z . We
now glue the zero section G̃0 and the ∞-section G̃∞ over a translation by z to get
a nonnormal variety Ḡ. Then O(G̃∞ + ρ−1(4)) descends to a line bundle L on Ḡ
with h0(L) = 1. In this way we find a compactified semiabelian variety canonically
associated to the pair ((Z , 4), z).

By doing this globally, we see that the moduli stack A ′
g comes with a universal

semiabelian variety π ′
: X ′

g → A ′
g and a relative compactification π̄ ′

: X̄ ′
g → A ′

g
(i.e., this map π̄ ′ is proper). One way to describe it is by taking a smooth compactifi-
cation π : X̃g → ˜Ag as constructed in [5] and restricting to π−1(A ′

g). The result then
does not depend on the choice of X̃g (see [15]). The universal semiabelian variety G
over the étale cover X̂g−1 of Bg ⊂ A ′

g is the Gm-bundle obtained from the Poincaré
bundle P → Xg−1 × X̂g−1 by deleting the zero section. We have the maps

G = P − {(0)} −→ Xg−1 ×Ag−1 X̂g−1
q

−−→ Ag−1.

The fibre over x ∈ Bg in the compactification X̄ ′
g of the universal family X ′

g of
semiabelian varieties is a compactification Ḡ of a Gm-bundle G over an abelian vari-
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ety Xg−1 of dimension g−1 as constructed above. (In level n ≥ 3, it is a compactifica-
tion of a (Gm ×Z/nZ)-bundle over an abelian variety Xg−1 of dimension g−1 and is
a family of n-cycles of P1’s over Xg−1.) The points where π̄ ′ is not smooth are exactly
the points of Ḡ −G. So, globally, the locus where π̄ ′ is not smooth is the codimension
2 cycle D in X̄ ′

g obtained from gluing by a shift the zero section and the ∞-section
of the P1-bundle associated to the Poincaré bundle P over Xg−1 ×Ag−1 X̂g−1. We
may identify an étale cover of the support of D with Xg−1 ×Ag−1 X̂g−1.

Our proof of Theorem 1.1 is based on an application of the Grothendieck-
Riemann-Roch theorem (GRR) to the structure sheaf on the universal semiabelian
variety over A ′

g . We start with a calculation on a smooth compactification X̃g , as
constructed in [5], of the universal semiabelian variety. We let π : X̃g → ˜Ag be the
natural morphism; if we restrict π to A ′

g , we get π̄ ′
: X̄ ′

g → A ′
g .

Applying GRR to the structure sheaf OX̃g
gives, in the Chow rings with rational

coefficients,

ch(π!OX̃g
) = π∗

(
e

ch(OX̃g
)
Td∨(�1

X̃g/ ˜Ag
)
)

= π∗

(
Td∨(�1

X̃g/ ˜Ag
)
)
.

Here Td∨ is the Todd class (which for a line bundle L equals c1(L)/(ec1(L)
−1)). The

relative cotangent sheaf fits in an exact sequence

0 → �1
X̃g/ ˜Ag

→ π∗(E) → F → 0

with E the Hodge bundle on ˜Ag and F a sheaf with support, where π is not smooth.
Note that by [5, Chapter VI, Theorem 1.1], we have

π∗(E) = �1
X̃g

(log)/π∗
(
�1

˜Ag
(log)

)
,

where log refers to logarithmic poles along the divisors at infinity of X̃g and ˜Ag .
Substituting this in the Riemann-Roch formula, we get

ch
(
π!(OX̃g

)
)

= π∗(F)Td∨(E)

with F := Td∨(F )−1. Since the cohomology of an abelian variety is the exterior
algebra on H1, the derived sheaf π!(OX̃g

) equals
∧

∗ E∨
=

∑g
i=0(−1)i

∧
i E∨. By the

Borel-Serre formula [1, Lemma 18], we have ch
( ∧

∗ E∨
)

= λgTd(E)−1. Comparing
the terms of degree ≤ g in the resulting identity

λgTd(E)−1
= π∗(F)Td∨(E)

yields the following result of [8].
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PROPOSITION 2.1
We have π∗(Td∨(F )−1) = π∗(F) = λg .

We now restrict to X̄ ′
g and A ′

g . The sheaf F has support on D. If u is a fibre coordi-
nate on the Gm-bundle over the abelian scheme Xg−1 ×Ag−1 X̂g−1 over X̂g−1, then
a section of the pullback π∗(E) of the Hodge bundle is given by du/u. We now pull
the section back to the P1-bundle and take the residue along the zero section and the
∞-section. This gives an isomorphism of sheaves on A ′

g ,

F ∼= OD̃,

where D̃ is the double étale cover of D corresponding to choosing the branches zero
and ∞ in the P1-bundle.

The normal bundle to an étale cover of D given by Xg−1 ×Ag−1 X̂g−1 is then
N = P ⊕ τ ∗(P−1) with P the Poincaré bundle and τ the map from Xg−1 ×Ag−1

X̂g−1 to itself defining the translation by which we glue the zero section and the ∞-
section of the P1-bundle corresponding to the Poincaré bundle. On points, τ is given
by τ(x, x̂) = (x+x̂, x̂). (We identify X̂ with X if needed.) We write α1 = c1(P) and
α2 = c1(τ

∗(P−1)) for the first Chern classes. On the space of rank ≤ 1 degenerations
X̄ ′

g , we then can write [D] = α1α2.
Let i : D → X̄ ′

g be the inclusion. Then if we write

Td∨(L) =
c1(L)

ec1(L) − 1
=

∞∑
k=0

bk

k!

(
c1(L)

)k

with bk the kth Bernoulli number, we have (cf. Mumford [15, page 303])

π̄ ′
∗

(
Td∨(OD)−1

− 1
)

= π̄ ′
∗

( ∞∑
k=1

(−1)kb2k

(2k)!
i∗

(α2k−1
1 + α2k−1

2
α1 + α2

))
. (1)

Consider now the Poincaré bundle P on X × X̂ for an abelian variety X of dimension
g − 1 and dual abelian variety X̂ . We write p and p̂ for the projections on X and X̂ .
If T is a line bundle on X ∼= X̂ which represents (locally in the étale topology) the
principal polarization of X̂g−1, then P = m∗T ⊗ p∗T −1

⊗ p̂∗T −1. We find

τ ∗(P−1) = τ ∗
(
(m∗T )−1)

⊗ τ ∗ p∗T ⊗ τ ∗ p̂∗T

= τ ∗
(
(m∗T )−1)

⊗ m∗T ⊗ p̂∗T

since pτ = m and p̂τ = p̂. We get

P ⊗ τ ∗(P−1) ∼= τ ∗(m∗T )−1
⊗ (m∗T )⊗2

⊗ p∗T −1.
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Restriction to a fibre X × x̂ gives

t−2x̂ (T −1) ⊗ (t∗x T )⊗2
⊗ T −1,

and by the theorem of the square, this is trivial on such a fibre X × x̂ . This implies
that on Xg−1 ×Ag−1 X̂g−1, we have

c1(N ) = c1
(
P ⊗ τ ∗(P−1)

)
= α1 + α2 = p̂∗(β)

with β a codimension 1 class on X̂g−1. In order to determine β, we may restrict to
the other fibre 0 × X̂ . Then P

|0×X̂ is trivial and τ ∗(P−1)|0 × X̂ is the pullback of
P−1 from the diagonal. But assuming, as we may, that T is symmetric, we find that P
restricted to the diagonal is T ⊗2. So as a result, we find on X × X̂ that β = −2c1(T )

on X̂ , and we get an identity on X × X̂ ,

N = P ⊕ P−1
⊗ p̂∗(T −2). (2)

We can consider this as a global identity on D by taking it as a definition of the line
bundle p̂∗(T ) on Xg−1 ×Ag−1 X̂g−1. The line bundle T restricts in each fibre X̂ of p
to O(2) with 2 the theta divisor. Developing the terms in (1), we get expressions of
the form

π̄ ′
∗

(
i∗(α1 + α2)

r (α1α2)
s)

= π̄ ′
∗

(
i∗( p̂∗(βr ))(α1α2)

s)
= j∗

(
βrφ∗(Ds)

)
,

where φ is the restriction to the boundary X̄ ′
g − X ′

g of π̄ ′ and j : Bg → A ′
g is the

inclusion of the boundary of A ′
g . Moreover, we use π̄ ′i = p̂ and abuse the notation

D also for the Q-class of D.
We claim that for dimension reasons the only surviving terms are of the form

j∗(βr )φ∗(Dg−1). Indeed, the fibres of φ have dimension g − 1. Thus, by Proposition
2.1, the only term in (1) which can contribute to λg is

(−1)gb2g

(2g)!
π̄ ′

∗i∗
(
(−1)g−1(2g − 1)(α1α2)

g−1).
So we need to compute π̄ ′

∗i∗(Dg−1) = π∗(Dg). The identity π∗(Td∨(F )−1) = λg of
Proposition 2.1 implies

π̄ ′
∗(F) =

(−1)b2g

(2g)!
π̄ ′

∗i∗
(
(2g − 1)(α1α2)

g−1)
= λg.

Represent the line bundle P by the divisor 5, and represent the line bundle T by a
divisor T (by abuse of notation) on Xg−1 ×Ag−1 X̂g−1. Then, by (2), we have α1 = 5
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and α2 = −5 − 2T , so

(−1)g−1α
g−1
1 α

g−1
2 = 52g−2

+

g−1∑
r=1

(
g − 1

r

)
52g−2−r p̂∗(2T )r .

Now apply GRR to the bundle P ⊗ p̂∗(O(nT )) on Xg−1 ×Ag−1 X̂g−1 and the mor-
phism p̂. It says

ch
(

p̂!(P ⊗ p̂∗O(nT ))
)

= p̂∗(e5) · enT
· Td∨(q∗Eg−1), (3)

where q∗(Eg−1) is the pullback to X̂g−1 of the Hodge bundle Eg−1 on Ag−1. But
p̂!(P ⊗ p̂∗O(nT )) is a sheaf with support (in codimension g − 1) over the zero
section S0. By applying GRR once again, this time to the inclusion S0 → X̂g−1 (cf.
[14, page 65]), we see that by viewing

p̂!

(
P ⊗ p̂∗O(nT )

)
as a derived sheaf on Xg−1, we get ci

(
p̂!(P ⊗ p̂∗O(nT ))

)
= 0 for i < g − 1 and

cg−1
(

p̂!(P ⊗ p̂∗O(nT ))
)

= (−1)g−2(g − 2)! [S0].

It then follows, by comparing codimension g classes that are coefficients of the same
powers of n on both sides of (3), that

p̂∗(5
2g−2−r )T r

= 0 if r 6= 0

and
p̂∗(5

2g−2−r )T r
= (−1)g−1(2g − 2)! [S0] if r = 0.

So we find that

π∗(Dg) = j∗
(

p̂∗(5
2g−2)

)
= (−1)g−1(2g − 2)![1g],

where 1g is the zero section of Xg−1 → Ag−1. Interpreting this identity in the right
way means taking the Q-class of 1g . We thus get

λg =
(−1)b2g

(2g)!
π̄ ′

∗i∗
(
(2g − 1)(α1α2)

g−1)
=

(−1)b2g

(2g)!
(2g − 1)(2g − 2)!(−1)g−1

[1g]Q

= (−1)gζ(1 − 2g)[1g]Q,

as required. This concludes the proof of Theorem 1.1.
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3. The tautological module
Recall that the Hodge bundle extends to a toroidal compactification Ãg as the dual
of the Lie algebra of the semiabelian variety that is supposed to exist over Ãg . Recall
also that the subring of CH∗

Q( Ãg) generated by the Chern classes λi of this extension
is independent of the choice of toroidal compactification. Indeed, the relation

(1 + λ1 + · · · + λg)
(
1 − λ1 + λ2 − · · · + (−1)gλg

)
= 1

(see [8], [4]) that always exists between the λi suffices to show that this ring is a
Gorenstein algebra with socle in the top degree, g(g + 1)/2, and is hence determined
by the evaluation map in that degree which is independent of the choice of Ãg . It is
still somewhat unpleasant that this tautological subring is a ring of classes living on
different toroidal compactifications. We suggest that the pushdown of classes in this
ring to the Satake compactification should also be of interest. We begin by showing
that it is independent of the choice of toroidal compactification.

DEFINITION-PROPOSITION 3.1
Let Ãg be a toroidal compactification with q : Ãg → A ∗

g the canonical map to the
Satake compactification, and let α be a subset of {1, 2, . . . , g}. Then the class `α :=

q∗(λα) ∈ CHQ
〈α〉

(A ∗
g ), where 〈α〉 :=

∑
i∈{1,2,...,g}\α i and CHQ

〈α〉
(A ∗

g ) is the Chow

homology group tensored with Q, is independent of Ãg , where λα =
∏

i∈α λi . We call
the Q-vector space spanned by these elements the tautological module.

Proof
Any two toroidal compactifications have a common refinement (see [5, pages 97–98,
(i), (iii)], so we may assume that one compactification is a refinement of the other.
Then the proposition is clear since the λi are compatible with pullback, pulling back
and pushing down is the identity for a birational map, and pushing down is transitive.

Of particular interest is, of course, to what extent the cycles of natural subvarieties of
A ∗

g lie in the tautological module. The class `{1} is actually the class of the natural
ample line bundle on A ∗

g and hence gives an element of the Chow cohomology group
CH1

Q(A ∗
g ). As such it acts on the Chow homology groups and preserves the tautolog-

ical module by the projection formula. In particular, the images of the fundamental
class under powers of `{1} lie in the tautological module.

In positive characteristic a less trivial example can be found in [8] and [3]. Con-
sider the closed algebraic subset V0 of Ag ⊗ Fp of all abelian varieties with p-rank
zero. By Koblitz [10], we know that this is a pure codimension g cycle on Ag ⊗ Fp.
It is a complete cycle since abelian varieties of p-rank zero cannot degenerate. Any
complete subvariety of Ag has codimension at least g in Ag (see [8] and [17]).
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THEOREM 3.2 (see [8], [3])
The Q-cycle class of V0 in CHg

Q(A ∗
g ⊗ Fp) is given by the formula [V0]Q = (p −

1)(p2
− 1) · · · (pg

− 1) `{g}.

Remark 3.3
(i) Recently, Keel and Sadun [9] proved that there is no complete subvariety of

codimension g in Ag ⊗ C for g ≥ 3.
(ii) In positive characteristic there are many other natural subvarieties whose

classes lie in the tautological module.

We now show that our main result can be used to express the top and next to the top
boundary components as tautological classes.

THEOREM 3.4
(i) In the group CHg

Q(A ∗
g ), we have [A ∗

g−1] = ((−1)g/ζ(1 − 2g))`{g}.

(ii) In the group CH2g−1
Q (A ∗

g ), we have [A ∗

g−2] = (1/ζ(1−2g)ζ(3−2g))`{g−1,g}.

Proof
For part (i), we note that by the excision exact sequence

CHg
Q(A ∗

g−2) → CHg
Q(A ∗

g ) → CHg
Q(Ag \ A ∗

g−2) → 0,

we may prove it in A ∗
g \ A ∗

g−2. We have a proper map A ′
g → A ∗

g \ A ∗

g−2, and hence
the formula follows from Theorem 1.1 by pushing down the main formula to A ∗

g . As
for part (ii), on A ′

g we have λgλg−1 = ((−1)g/ζ(1 − 2g))λg−1δg , the support of
δg maps finitely to Ag−1, and the restriction of λg−1 to it corresponds to λg−1 on
Ag−1, which is zero. Hence λgλg−1 is zero on A ′

g and for dimension reasons, using
excision, is a multiple of [A ∗

g−2]. That multiple can be determined by intersecting

with λ
(g−1)(g−2)/2
1 . Using the intersection numbers in [8, page 72], one sees that

λgλg−1λ
(g−1)(g−2)/2
1 [ ˜Ag] =

( 1
ζ(1 − 2g)ζ(3 − 2g)

)
λ

(g−1)(g−2)/2
1 [ ˜Ag−2],

and then one uses λ
(g−1)(g−2)/2
1 [ ˜Ag−2] = λ

(g−1)(g−2)/2
1 [A ∗

g−2].

The statements in Theorem 3.4 suggest an immediate generalization. To lend some
credibility to such a generalization, we sketch a proof of it in positive characteristic.
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THEOREM 3.5
In characteristic p > 0, we have in CHd

Q(A ∗
g ) with d = g(g + 1)/2 − (g − i)(g +

1 − i)/2 the relation

[A∗

g−i ] = (−1)i 1∏i
j=1 ζ(2 j − 1 − 2g)

`{g−i+1,...,g}.

Proof
The idea of the proof is to use the fact that the cycle class of the locus V (g)

f in ˜Ag of
semiabelian varieties of p-rank ≤ f is a nonzero multiple of λg− f (see [8]) and the
fact that a semiabelian variety of p-rank ≤ f has torus rank ≤ f .

We use a toroidal compactification ˜Ag of Faltings-Chai type. The closure 1̄g in
˜Ag of the locus 1g has a cover that is a toroidal compactification A T

g−1 of Ag−1 but

not necessarily smooth. But there is a smooth toroidal compactification ˜Ag−1 and a
morphism ˜Ag−1 → A T

g−1 with the property that the pullback of the universal semi-

abelian variety X̃g to ˜Ag−1 is a product of a universal semiabelian variety X̃g−1

with a torus. Then this can be repeated: the smooth toroidal compactification ˜Ag−1 is
a compactification of the canonical partial compactification A ′

g−1, and it contains a
locus 1g−1 corresponding to trivial extensions of (g − 2)-dimensional abelian vari-
eties with Gm . We can then consider the closure 1̄g−1, and there is a smooth toroidal
compactification ˜Ag−2 mapping to 1̄g−1 with a similar property.

From Theorem 1.1, we know that we have a relation in CH∗

Q( ˜Ag),

λg
.
= [1̄g] + σg,

where σg is a class with support on q−1(A ∗

g−2) and where .
= means equality up to a

nonzero multiplicative factor which is a rational number. The relation [V (g)
1 ]

.
= λg−1

in CHg−1
Q ( ˜Ag) gives

λgλg−1
.
= [V (g)

1 ] · [1̄g] + [V (g)
1 ] · σ

.
= [V (g)

1 ] · [1̄g]

since V (g)
1 does not intersect the torus rank ≥ 2 locus q−1(A ∗

g−2). Now the pullback

of the intersection of V (g)
1 with 1̄g to ˜Ag−1 is exactly the p-rank zero locus V (g−1)

0
on Ag−1. But we know that

[V (g−1)
0 ]

.
= λg−1

.
= δg−1

on A ′

g−1; hence, on the cover ˜Ag−1 of 1̄g , we get the relation

[V (g−1)
1 ] · 1̄g

.
= δg−1 + σg−1
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with σg−1 a class with support on q−1(A ∗

g−3). Now we use the relation λg−2
.
= [V (g)

2 ]

to get

λgλg−1λg−2
.
= [V (g)

2 ] · 1̄g−1 + [V (g)
2 ] · σg−1

.
= [V (g)

2 ] · 1̄g−1,

and the pullback of the intersection of V (g)
2 with 1̄g−1 to ˜Ag−2 is exactly V (g−2)

0 .
But using again a relation [V (g−2)

0 ]
.
= λg−2

.
= δg−1 on A ′

g−2, we see that a nonzero

multiple λgλg−1λg−2 is represented by the cycle δg−1 on ˜Ag − q−1(A ∗

g−3). Arguing
as in the proof of Theorem 3.4, we see that q∗(λgλg−1λg−2) is a nonzero multiple of
[A∗

g−2]. To determine the multiple, we intersect again with the appropriate power of
λ1 (cf. [8]). Proceeding in this way by induction, one deduces the theorem.

By a simple argument, we can show that another class is also in the tautological
module.

PROPOSITION 3.6
The cycle class [B∗

g ] of the boundary is the same in the Chow group CHg
Q(A ∗

g ) as a
multiple of the Q-class of the locus of products X × E of principally polarized abelian
varieties of dimension g − 1 with a fixed elliptic curve E .

Proof
For g = 1, 2, see [7]. Consider (for g > 2) the space Ag−1,1 of products of a princi-
pally polarized abelian variety of dimension g−1 and an elliptic curve. It is the image
of Ag−1 × A1 in Ag under a morphism to Ag which can be extended to a morphism
A ∗

g−1 × A ∗

1 → A ∗
g . Since an étale cover of A1 is the affine j-line, we find a rational

equivalence between the cycle class of a fibre A ∗

g−1 × { j} with j a fixed point on the
j-line and a multiple of the fundamental class of the boundary B∗

g .
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271 – 328. MR 0717614

[17] F. OORT, “Complete subvarieties of moduli spaces” in Abelian Varieties (Egloffstein,
Germany, 1993), de Gruyter, Berlin, 1995, 225 – 235. MR 1336609

Ekedahl
Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden;
teke@math.su.se

van der Geer
Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Plantage Muidergracht
24, 1018 TV Amsterdam, The Netherlands; geer@science.uva.nl


