Solution Exam Riemann Surfaces (2013)

1) Write w € £(Y) locally in a coordinate neighborhood (with coordinate z) as f dz.
Then we have

dw = (0f/0z)dz Ndz + (0f/0Z)dz N dz = (Of /dzZ) dZ A dz

and this is zero if and only if 9 f /dz = 0, that is, by Cauchy-Riemann, if f is holomorphic.

2) Ramification can occur only at the zeros or poles of f. Let p € P! be a simple zero
of f and z a local coordinate at p with z(p) = 0. Then f is of the form zu with u
a non-vanishing function at p. Changing z to zu gives the covering locally as y3 = z
showing that the ramification index is 3. At z = oo the function f has a pole of order
4; therefore we can write with w = 1/z the covering locally as y®> = w*u with u a
non-vanishing holomorphic function. Changing y to yw we get > = wu and see again
that the ramification index is 3. By the Hurwitz-Zeuthen formula we get

29(X)—2=3-(-2)+(24+24+2+2+2) =4, g(X)=3.

(Another argument for the ramification indices: X has an automorphism of order 3
sending v to ¢y with ¢ # 1 and ¢3 = 1. This shows that at a point of X we have
ramification 1 or 3.)

3. i) To show exactness we have to show exactness of the sequence of stalks at any point

x. For any U kernel of 9 on £(U) are the holomorphic functions Ox (U), hence also

Ox ; is the kernel of the induced map on the stalk. This shows the exactness at place

£. By the Dolbeault lemma a (0, 1)-form is locally of the form df dz for some f € £(U)

in a open neighborhood of x. This proves the surjectivity &, — E2'L. This proves i).
For ii) we apply the long exact cohomology sequence and get

0— H%X,0x) — HY(X,&) — H(X, &%) — H'(X,0x) — H'(X,€) = (0),

where the last zero is derived from £ being fine. Hence the map
E81(X) = H(X,&%") — H'(X,Ox)

is surjective with kernel 0&(X). We thus get the Dolbeault isomorphism H'(X,0x) &
EVL(X)/IE(X).
4. We shall use that H°(X,Ox (D)) = (0) if degD < 0. Indeed, if deg D < 0 then
H°(X,0x (D)) = (0) because a non-zero section f satisfies div(f) + D > 0, but by
deg(f) + deg D = deg D this has negative degree. So f = 0.

By Serre duality we have dim H*(X,Ox (D)) = dim H°(X,Ox (K — D)) and since

deg(K — D) = 2g — 2 —deg D < 0 for deg D > 3 we have dim H'(X,Ox (D)) = 0 for
deg D > 3. From Riemann-Roch we get

dim H°(X,0x (D)) — dim H(X,0x (D)) =degD +1—2 =deg D — 1,
hence hY(X,0(D)) = deg D — 1.



Since X has genus 2 we have H!(X,0x) = 2. By Serre duality this shows that
H(X,0(K)) = 2.

We also use that H°(X,0x) = C and H%(X,Ox (D)) = (0) if deg(D) = 0 and

D # 0. (Indeed, if 0 # f € H°(X,O(D)) with deg D = 0 then (f) + D > 0 and has
degree 0, hence is zero, hence (f) = —D ~ 0.) For deg D = 2 we have h!(X,0(D)) =
hY(X,0x (K — D)) # 0 if and only if K — D ~ 0. So R-R gives for h°(X,Ox (D)) the
value2if D~ Korlif D ¢ K.
5. i) By the Hurwitz-Zeuthen formula we have 2¢g(X) —2 = 2. (=2) + r, hence r =
29(X) + 2. ii) Suppose that ¢(P;) = Q; € P!. On P! we have Q; ~ Q,. (Change
coordinates so that P; = 0 and P; = oo if ¢ # j and use the function z.) Hence by
applying pullback ¢* we get 2P; = ¢*(Q;) ~ ¢*(Q;) = 2P;. iii) The function field of
X is a degree 2 extension of the function field C(z) of P!, say C(z)(y) with y? = f(x)
with f a rational function, say f = a/b with a,b polynomials in x. Replacing y by yb
we may assume thatf is a polynomial. Assume that P; lies over oo € P'. Then ¢ is
ramified at the zeros and poles of f; say f has a pole at ()1 = oo and simple zeros at Q;
with ¢ # 1. The divisor of y is then >.._, P, — (r — 1)P;. Hence y.;_, P ~ (r — 1)P;.
Adding P; to both sides gives iii).

For iv) take the meromorphic 1-form w = dz on P! with divisor —2Q;. Then the

divisor of ¢*(w) is =3Py + Y ._, P;. (Note that at Q1 = co we have local coordinate
w = 1/z and w = —dw/w? so the pullback ¢*(w) in term of a local coordinate u
with u? = w equals —d(u?)/u* = —2du/u®. ) Then we have =3P, + >\ , P; ~
—4P + 37 P ~ (29 — 2) P by iii).
6. i) If f € H°(X,Ox(P)) is non-constant, then f has exactly one pole and one zero.
The function f defines an isomorphism X — P! contradicting the assumption that
g>0. So H°(X,0x(P)) = C. By Riemann-Roch we then have h°(P) —h'(P) =2—g,
hence h!(P) = g — 1. For ii) we consider the exact sequence of sheaves

0—Ox(n—1)P)— Ox(nP)—F —0

with F a skyscraper sheaf with support at P. Taking the beginning of the long exact
cohomology sequence we get

0 —-H°(X,0x((n—1)P) — H°(X,O0x(nP))-2-C —
HY(X,0x((n —1)P)) — H*(X,O0x(nP)) — 0
and depending on whether the map p is surjective or not we have
o ((nP)=h((n—1)P)+1 or h°(nP)=hr’((n—1)P).
For iii) observe by that we by the same long exact sequence we have
R*((nP)=h'((n—1)P)—1 or h'(nP)=h'((n—1)P).

and
hO(nP) = h°((n — 1)P) + 1 <= h'(nP) = h*((n — 1) P) (%)

The desired equality of iii) holds for N = 1. If N changes to N + 1 and the left
hand side goes up by 1 then by (*) we see h'(NP) = h'((N + 1)P), so the right



hand side goes also up by 1. For iv) we observe that h'(NP) = h°(K — NP) and
deg(K—NP) =2g—2—N < 0, hence h®(K—N P) = 0. For v) remark that for N > 2g—1
the right hand side of iii) is N — g. So there are g steps where h®(nP) = h%((n — 1)P);
this means that every meromorphic function f € H°(X,Ox(nP)) has a pole of order
at most n — 1 at P and no other poles. Now i) implies n; = 1 and iv) implies n, < 2g.



