
Solution Exam Riemann Surfaces (2013)

1) Write ω ∈ E(Y ) locally in a coordinate neigborhood (with coordinate z) as f dz.
Then we have

dω = (∂f/∂z)dz ∧ dz + (∂f/∂z)dz ∧ dz = (∂f/dz) dz ∧ dz

and this is zero if and only if ∂f/dz = 0, that is, by Cauchy-Riemann, if f is holomorphic.

2) Ramification can occur only at the zeros or poles of f . Let p ∈ P
1 be a simple zero

of f and z a local coordinate at p with z(p) = 0. Then f is of the form z u with u
a non-vanishing function at p. Changing z to zu gives the covering locally as y3 = z
showing that the ramification index is 3. At z = ∞ the function f has a pole of order
4; therefore we can write with w = 1/z the covering locally as y3 = w4 u with u a
non-vanishing holomorphic function. Changing y to yw we get y3 = wu and see again
that the ramification index is 3. By the Hurwitz-Zeuthen formula we get

2g(X)− 2 = 3 · (−2) + (2 + 2 + 2 + 2 + 2) = 4, g(X) = 3 .

(Another argument for the ramification indices: X has an automorphism of order 3
sending y to ζy with ζ 6= 1 and ζ3 = 1. This shows that at a point of X we have
ramification 1 or 3.)

3. i) To show exactness we have to show exactness of the sequence of stalks at any point
x. For any U kernel of ∂ on E(U) are the holomorphic functions OX(U), hence also
OX,x is the kernel of the induced map on the stalk. This shows the exactness at place
E . By the Dolbeault lemma a (0, 1)-form is locally of the form ∂f dz for some f ∈ E(U)
in a open neighborhood of x. This proves the surjectivity Ex → E0,1

x . This proves i).
For ii) we apply the long exact cohomology sequence and get

0 → H0(X, OX) → H0(X, E) → H0(X, E0,1) → H1(X, OX) → H1(X, E) = (0),

where the last zero is derived from E being fine. Hence the map

E0,1(X) = H0(X, E0,1) → H1(X, OX)

is surjective with kernel ∂E(X). We thus get the Dolbeault isomorphism H1(X, OX) ∼=
E0,1(X)/∂E(X).

4. We shall use that H0(X, OX(D)) = (0) if deg D < 0. Indeed, if deg D < 0 then
H0(X, OX(D)) = (0) because a non-zero section f satisfies div(f) + D ≥ 0, but by
deg(f) + deg D = deg D this has negative degree. So f = 0.

By Serre duality we have dim H1(X, OX(D)) = dim H0(X, OX(K −D)) and since
deg(K − D) = 2g − 2 − deg D < 0 for deg D ≥ 3 we have dim H1(X, OX(D)) = 0 for
deg D ≥ 3. From Riemann-Roch we get

dim H0(X, OX(D)) − dim H1(X, OX(D)) = deg D + 1 − 2 = deg D − 1,

hence h0(X, O(D)) = deg D − 1.



Since X has genus 2 we have H1(X, OX) = 2. By Serre duality this shows that
H0(X, O(K)) = 2.

We also use that H0(X, OX) = C and H0(X, OX(D)) = (0) if deg(D) = 0 and
D 6∼ 0. (Indeed, if 0 6= f ∈ H0(X, O(D)) with deg D = 0 then (f) + D ≥ 0 and has
degree 0, hence is zero, hence (f) = −D ∼ 0.) For deg D = 2 we have h1(X, O(D)) =
h0(X, OX(K − D)) 6= 0 if and only if K − D ∼ 0. So R-R gives for h0(X, OX(D)) the
value 2 if D ∼ K or 1 if D 6∼ K.

5. i) By the Hurwitz-Zeuthen formula we have 2g(X) − 2 = 2 · (−2) + r, hence r =
2g(X) + 2. ii) Suppose that φ(Pi) = Qi ∈ P1. On P1 we have Qi ∼ Qj. (Change
coordinates so that Pi = 0 and Pj = ∞ if i 6= j and use the function z.) Hence by
applying pullback φ∗ we get 2Pi = φ∗(Qi) ∼ φ∗(Qj) = 2Pj . iii) The function field of
X is a degree 2 extension of the function field C(x) of P

1, say C(x)(y) with y2 = f(x)
with f a rational function, say f = a/b with a, b polynomials in x. Replacing y by yb
we may assume thatf is a polynomial. Assume that P1 lies over ∞ ∈ P1. Then φ is
ramified at the zeros and poles of f ; say f has a pole at Q1 = ∞ and simple zeros at Qi

with i 6= 1. The divisor of y is then
∑r

i=2
Pi − (r − 1)P1. Hence

∑r

i=2
Pi ∼ (r − 1)P1.

Adding P1 to both sides gives iii).
For iv) take the meromorphic 1-form ω = dz on P1 with divisor −2Q1. Then the

divisor of φ∗(ω) is −3P1 +
∑r

i=2
Pi. (Note that at Q1 = ∞ we have local coordinate

w = 1/z and ω = −dw/w2 so the pullback φ∗(ω) in term of a local coordinate u
with u2 = w equals −d(u2)/u4 = −2du/u3. ) Then we have −3P1 +

∑r

i=2
Pi ∼

−4P1 +
∑r

i=1
Pi ∼ (2g − 2)P1 by iii).

6. i) If f ∈ H0(X, OX(P )) is non-constant, then f has exactly one pole and one zero.
The function f defines an isomorphism X → P1 contradicting the assumption that
g > 0. So H0(X, OX(P )) = C. By Riemann-Roch we then have h0(P )−h1(P ) = 2− g,
hence h1(P ) = g − 1. For ii) we consider the exact sequence of sheaves

0 → OX(n − 1)P ) → OX(nP ) → F → 0

with F a skyscraper sheaf with support at P . Taking the beginning of the long exact
cohomology sequence we get

0 →H0(X, OX((n − 1)P ) → H0(X, OX(nP ))
ρ

−→C →

H1(X, OX((n − 1)P )) → H1(X, OX(nP )) → 0

and depending on whether the map ρ is surjective or not we have

h0((nP ) = h0((n − 1)P ) + 1 or h0(nP ) = h0((n − 1)P ).

For iii) observe by that we by the same long exact sequence we have

h1((nP ) = h1((n − 1)P ) − 1 or h1(nP ) = h1((n − 1)P ).

and
h0(nP ) = h0((n − 1)P ) + 1 ⇐⇒ h1(nP ) = h1((n − 1)P ) (∗)

The desired equality of iii) holds for N = 1. If N changes to N + 1 and the left
hand side goes up by 1 then by (*) we see h1(NP ) = h1((N + 1)P ), so the right



hand side goes also up by 1. For iv) we observe that h1(NP ) = h0(K − NP ) and
deg(K−NP ) = 2g−2−N < 0, hence h0(K−NP ) = 0. For v) remark that for N ≥ 2g−1
the right hand side of iii) is N − g. So there are g steps where h0(nP ) = h0((n− 1)P );
this means that every meromorphic function f ∈ H0(X, OX(nP )) has a pole of order
at most n − 1 at P and no other poles. Now i) implies n1 = 1 and iv) implies ng < 2g.


