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Modular Forms
Bas Edixhoven, Gerard van der Geer and Ben Moonen

There are five fundamental operations in mathematics: addition,
subtraction, multiplication, division and modular forms

—M. Eichler1

Modular functions played a prominent role in the mathematics of the 19th
century, where they appear in the theory of elliptic functions, i.e., elements of
the function field of an elliptic curve, but also in the theory of binary quadratic
forms. The term seems to stem from Dirichlet, but the functions are clearly
present in the works of Gauss, Abel and Jacobi. They play an important role
in the work of Kronecker, Eisenstein and Weierstrass, and later in that century
they appear as central themes in the work of Poincaré and Klein. The theory
of Riemann surfaces developed by Riemann became an important tool, and
Klein and Fricke studied and popularized the Riemann surfaces defined by
congruence subgroups of the modular group SL(2, Z).

Modular forms appear as theta functions in the work of Jacobi in the 1820’s,
and, up to a factor q1/24, already in Euler’s identity

∏

n≥1

(1 − qn) =
∑

k∈Z

(−1)kqk(3k−1)/2 .

They show up in a natural way in the expansions of elliptic functions and
as such they were studied by Eisenstein, but the concept of modular forms
was formalized only later. Apparently, it was Klein who introduced the term
“Modulform”, cf. page 144 of Klein-Fricke [12].

One had to wait till Hecke for the first systematic study of modular forms
on SL(2, Z) and its congruence subgroups. The first appearance of the word
“Modulform” in Hecke’s work seems to be in [11].

1 Apocryphal statement ascribed to Martin Eichler, March 29, 1912–October 7, 1992.
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A crucial point in our story came when Hecke introduced the “averaging”
operators that bear his name and that give essential arithmetic information
on modular forms. Given (in modern terminology) a Hecke eigenform f on
�1(N ) with Fourier series

∑
a(n)qn , normalised by the condition a(1) = 1,

Hecke could interpret the Fourier coefficient a(n) as the eigenvalue of his oper-
ator T (n). This also enabled him to express the Dirichlet series L( f, s) =∑

n≥1 a(n)n−s as an Euler product
∏

p

(
1 − a(p)p−s + ε(p)pk−1−2s

)−1,
where k is the weight of f and ε : (Z/NZ)× → C× its character. Thus
he generalized a result of Mordell, who had proved in 1917 the multiplica-
tivity of the Ramanujan τ -function that gives the Fourier coefficients of the
weight 12 cusp form �. (This property of the τ -function had been observed
by Ramanujan in 1916.) Though the eigenvalues of eigenforms showed a def-
inite arithmetic flavour, it remained at that time a mystery why there should
be arithmetic information in the Fourier coefficients of eigenforms. Hecke
did not know, at that time, that the space of cusp forms of a given weight
and level possesses a basis of eigenforms for the Hecke operators T (n) with
n prime to the level. But a little later Petersson defined an inner product
with respect to which these T (n) are normal, and with this it followed that
such a basis exists. Hecke also proved, using the Mellin transform, that the
Dirichlet series L( f, s) associated to a cusp form f of weight k on �1(N )

has an analytic continuation to a holomorphic function on the whole com-
plex plane and satisfies a functional equation relating L( f, s) to L(g, k − s),
where g(τ ) = τ k f (−1/Nτ).

The second important step that Hecke made was to characterise the Dirichlet
series

∑
n>0 a(n)n−s of the form L( f, s) with f a cusp form of weight k on

SL(2, Z) by regularity conditions and a functional equation relating L( f, s) to
L( f, k − s). Indeed, a Fourier series f = ∑

n≥1 a(n)qn that is holomorphic
on the upper half plane is a cusp form of weight k on SL(2, Z) precisely when
f (−1/τ) = τ k f (τ ). This so-called converse theorem generalized a theorem
of Hamburger, saying that a sufficiently regular Dirichlet series that satisfies
the functional equation of the Riemann zeta function is in fact a multiple of the
Riemann zeta function.

The L-function that Hecke associates to a cusp form has its roots in earlier
work of Gauss, Dirichlet and Riemann. But although Hecke was working at
the same mathematics department (in Hamburg) as Artin, who was then work-
ing on his Artin L-series for representations of the Galois group of a number
field, it seems that neither of them appreciated the link between the two types
of L-functions. This may seem odd to us, but it is good to realize that the
moment that the link was recognized in its full conjectural setting represents
a second turning point in our history. Indeed, looking from a large distance
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one may distinguish two turning points for the history of modular forms in the
20th century: Hecke’s introduction of the Hecke operators and his converse
theorem, and Langlands’s letter of January 1967 to Weil, in which he laid out a
grand program in which modular forms are an incarnation of non-abelian class
field theory. Langlands’s letter pointed out the common source for the L-series
of Hecke and Artin, and brought the two types of L-functions together in a
larger framework. We will come to that later.

But at the time that Hecke revolutionized the topic, it also lost its promi-
nence, as novel developments in topology and algebra started to attract more
attention. This was a time when many new concepts appeared, like the notions
of algebraic topology and homology theory, and when new algebraic struc-
tures like rings and algebras were studied. These notions completely changed
the face of mathematics at the time. Klein writes in this connection: “Es hat
sich hier ein merkwürdiger Umschwung vollzogen. Als ich studierte, galten
die Abelschen Funktionen—in Nachwirkung der Jacobischen Tradition—als
der unbestrittene Gipfel der Mathematik, und jeder von uns hatte den selbst-
verständlichen Ehrgeiz, hier selbst weiter zu kommen. Und jetzt? Die junge
Generation kennt die Abelschen Funktionen kaum mehr.”(Vorlesungen über
die Entwicklung der Mathematik, VII.)

In retrospect these developments, like the construction of homology and
cohomology, the emergence of new algebraic structures and the develop-
ment of an algebraic foundation for algebraic geometry, were the necessary
ingredients for the later growth of the theory of modular forms.

The fact that there was a shift of focus to new topics in mathematics does
not mean that the theory of modular forms came to a standstill. Throughout
the 20th century there have been new ideas and generalizations, broadening
but also deepening the subject. Some of these generalizations dealt with the
extension of the notion of modular forms to other groups. An example of this
is the step from SL(2, Z) to the group SL(2, OK ) with OK the ring of inte-
gers of a totally real field, the Hilbert modular group. Hilbert was inspired by
Kronecker’s “Jugendtraum” about generating abelian extensions of imaginary
quadratic fields. The Kronecker-Weber theorem says that all abelian exten-
sions of Q are contained in the field generated, over Q, by all roots of unity,
i.e., by the torsion points of the circle group. It was also found that for an
imaginary quadratic field K , the values of a suitable elliptic function at the
torsion points of an elliptic curve with complex multiplication by OK could
be used to generate abelian extensions of K . Hilbert envisioned an analogue
of the Kronecker-Weber theorem and the theory of complex multiplication
for abelian extensions of CM-fields (totally imaginary quadratic extensions
of totally real number fields). He devoted to this the 12th of his famous
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Mathematische Probleme, presented at the ICM 1900 in Paris.2 As part of his
investigations, Hilbert had worked out a theory of modular functions for totally
real fields, more precisely for modular functions for the action of SL(2, OK )

on the product of n = [K : Q] upper half planes. He wrote an unpublished
manuscript about it, and under his guidance his student Blumenthal wrote his
Habilitationsschrift about the basics of the theory. Hecke, also a student of
Hilbert, wrote his thesis about it, this time with the purpose of setting up a
theory of abelian extensions of quartic CM-fields. After these beginnings this
development seemed to dry up, and though impressive progress has been made,
Hilbert’s 12th problem is to date unsolved. But recently two new ideas have
been launched: Manin’s “Alterstraum”, and Darmon’s “Stark-Heegner points”.

In the years after Hecke the number of mathematicians involved in modular
forms shrank to a small group, including Eichler, Maass, Petersson and Rankin,
but they continued to contribute. In 1946 Maass, working under difficult
circumstances in postwar Germany, showed that one could sacrifice holomor-
phicity by considering eigenfunctions of the Laplacian y2(∂2/∂x2 + ∂2/∂y2)

that are invariant under the modular group.
In another direction, Siegel generalized the notion of the modular group

inspired by his quantitative theory of representations of quadratic forms by
quadratic forms, and also by the theory of period matrices of Riemann surfaces;
see [19]. He made a detailed study of the symplectic group and its geome-
try, thus picking up a thread left by Riemann and neglected by many, Scorza
being one of the exceptions. In his groundbreaking paper of 1857, Riemann
had introduced the period matrix of a Riemann surface of genus g, and had
shown that it can be normalized in the form of a complex symmetric g by g
matrix with positive definite imaginary part. Siegel considered the so-called
Siegel upper half space Hg of all such period matrices, on which the symplectic
group acts by fractional linear transformations. He determined a fundamen-
tal domain and its natural volume, studied the function field of the quotient
space Sp(2g, Z)\Hg , and he introduced the notion of a (Siegel) modular form.
Siegel’s main motivation was his desire to describe in a quantitive way the rep-
resentations of integral quadratic forms by other quadratic forms. His central
result can be expressed as an equality of a theta series with an Eisenstein series
for the Siegel modular group.

In the 1950’s and 1960’s another vast generalization of the theory of modular
forms was conceived by the introduction of the general notion of automorphic
form, and of the subsequent adèlisation of this concept. According to Borel

2 See [15] for further historical information on Hilbert’s 12th problem and Kronecker’s
“Jugendtraum”.
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and Jacquet in [3] and [4], it had first been observed by Gelfand and Fomin
that modular forms and other automorphic forms on the upper half plane and
other bounded symmetric domains can be viewed as smooth vectors in rep-
resentations of the ambient Lie group G on suitable spaces of functions on G
that are invariant under the discrete subgroup �. A general definition was given
by Harish-Chandra in [9] for a semisimple connected Lie group G, a discrete
subgroup � and a maximal compact subgroup K . An automorphic form on G
with respect to K and � is then a left-�-invariant and right-K -finite smooth
function f : G → C, finite under the center of the enveloping algebra of
the Lie algebra of G, and satisfying a certain growth condition. The consid-
eration of the system of all congruence subgroups of a connected reductive
group G over Q then led to the notion of automorphic forms on the group
G(A) of adèlic points of G, and this notion was then further generalised to
connected reductive groups over global fields F . An important consequence
of this point of view is that the space of automorphic forms on G(A) can be
studied as a representation of the group G(A f ), as well as of K and the Lie
algebra of G(R). Irreducible representations thus obtained are called automor-
phic representations; they can be decomposed as restricted tensor products of
irreducible representations of the local groups G(Fv). In a precise way, these
local representations generalise the systems of eigenvalues of a Hecke eigen-
form. Especially the Russian school contributed to the early development in
this direction (Gelfand, Graev, Piatetskii-Shapiro,. . . ). The necessary theory of
algebraic groups, arithmetic subgroups and adèle groups had been developed
in the meantime, see for example [5].

On another stage but also during the 1950’s and 1960’s, weight two modular
forms for congruence subgroups of SL(2, Z) were related to differential forms
on modular curves, and hence to the Jacobian varieties of modular curves, also
in positive characteristic. Advances in algebraic geometry made it possible to
study the reduction of curves and Jacobians at almost all primes. This led to
the identification of the (partial) Hasse-Weil zeta functions of modular curves
with a product of L-functions of such modular forms, at least at almost all
primes (Eichler, Shimura; see [17]), thus proving the meromorphic continua-
tion and the existence of a functional equation for these zeta functions. Kuga
and Shimura were even able to do the same for forms of higher weight on the
unit group of a quaternion algebra (see [13]).

In particular, the Hasse-Weil L-functions of elliptic curves over Q occur-
ring as isogeny factor of the Jacobian of a modular curve were identified
(up to finitely many Euler factors) with L-functions of modular forms.
Deuring proved in 1955 that the L-function of an elliptic curve with com-
plex multiplication is a product of two Hecke L-functions associated to
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“Grössencharaktere”. In the same year, Taniyama [20] raised the question
whether the meromorphicity and functional equation of the Hasse-Weil zeta
functions of elliptic curves over number fields could be proved by finding suit-
able automorphic forms (see [18], where Shimura evokes a vivid portrait of
their interaction in that time). Taniyama’s idea was that the expected functional
equation should imply modularity for the associated Fourier series along the
lines of Hecke who characterized modular forms on SL(2, Z) by the functional
equation of their associated Dirichlet series.

In [24] Weil extended Hecke’s argument by showing that if for sufficiently
many Dirichlet characters χ the Dirichlet series

∑
χ(n)a(n)n−s associated

to a function f on the upper half plane given by a Fourier series
∑

a(n)qn

have a suitable continuation to C and satisfy an explicitly given functional
equation then f is a modular form on a congruence subgroup �0(N ) (with N
determined by the functional equations). At the end Weil states the modularity
question for an elliptic curve E over Q in a precise form: the complete Hasse-
Weil L-function is defined, as well as the conductor of E , and the expected
functional equations. It was this paper of Weil that drew renewed attention to
the modularity question for elliptic curves over Q.

In January 1967 Langlands wrote a letter [14] to Weil that marked the start of
the “Langlands program”. The main idea of this program is that the L-function
associated to a Galois representation should coincide with the L-function
that can be associated to some “algebraic” automorphic representation (gen-
eralising algebraic Hecke characters on idèle groups), and therefore has an
analytic continuation and satisfies a functional equation. For example, the
Artin L-function for an irreducible continuous n-dimensional complex rep-
resentation of the Galois group of a number field F should be the L-function
associated to an automorphic cuspidal representation of GL(n, AF ). This leads
to conjectural correspondences, both global and local, between Galois repre-
sentations and automorphic representations, characterised by being compatible
with suitable L-factors and ε-factors. Also compatible systems of l-adic rep-
resentations can be taken into account, and general reductive groups G over
number fields F are considered. The Langlands dual group L G is introduced
in order to formulate the natural (conjectural) relations between automor-
phic representations on different reductive groups: the functoriality principle.
In collaboration with Jacquet, Langlands gave support for the functoriality
principle by working it out and establishing the Jacquet-Langlands correspon-
dence for the group GL(2) and its inner twists (unit groups of quaternion
algebras). Here, trace formulas (Selberg) play the main role. The Langlands
program constitutes a grand framework for number theory, representation
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theory and algebraic geometry, and has become one of the focal points in pure
mathematics.

By that time the new methods of algebraic geometry, after the revolution in
that field led by Grothendieck, came to play their role in the theory of modu-
lar forms. Eichler and Shimura had shown that the space of modular forms of
weight k ≥ 2 and level N can be interpreted as the (k −1, 0)-part of the Hodge
decomposition of the cohomology of a suitable local system on the modular
curve X1(N ): the k − 2 symmetric power of the rank two local system given
by the fiberwise cohomology of the universal family of elliptic curves. In 1968
Deligne showed that the l-adic étale cohomology of a non-singular projec-
tive model of the k − 2 power of the universal elliptic curve over the j-line
provides the Galois representations then conjecturally associated to modular
forms. Here Deligne had to deal with the technical difficulties caused by the
presence of cusps. As a consequence of his results, the Ramanujan conjecture
on the absolute value of the Fourier coefficients of these modular forms would
follow from the Weil conjectures on the cohomology of non-singular projec-
tive varieties over finite fields. Six years later Deligne himself proved the last
open part of these conjectures, and Ramanujan’s conjecture followed. A clear
link between modular forms and Galois representations was established.

The new methods of algebraic geometry were also needed strongly to over-
come the hurdles in extending results for GL(2) to other groups, like the
symplectic group. The main reason for this is that the associated modular
varieties are of higher dimension. Moreover, the fact that the spaces that are
considered are usually not complete presents serious obstacles. Satake showed
how the quotient space Sp(2g, Z)\Hg can be compactified by adding the orbits
of the rational boundary components Hi with 0 ≤ i ≤ g in Hg , thus obtaining
a normal analytic space, which however for g > 1 is very singular. Baily and
Borel generalized his construction to the so-called Baily-Borel compactifica-
tion where the quotient of a bounded symmetric domain under an arithmetic
subgroup is compactified to a projective variety that contains the original as a
quasi-projective open subvariety. The embedding in projective space is given
by modular forms of an appropriate weight. In other words, the homogeneous
coordinate rings of these compactifications are the graded algebras of mod-
ular forms. These Baily-Borel compactifications are in general very singular.
Igusa constructed a smooth compactification of Sp(2g, Z)\Hg for g ≤ 3 by
blowing up the Satake compactification along the ideal of the boundary. Mum-
ford launched a big program to construct smooth compactifications by toroidal
methods. A drawback of these compactifications is that they are not canonical,
but depend on combinatorial data (cone decompositions).
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Around the same time Hirzebruch discovered how to resolve the
singularities of Hilbert modular surfaces. The singularities were resolved by
cycles of rational curves. This provided a lot of information about Hilbert
modular forms for real quadratic fields. In particular, it led to a geometric
interpretation of the inverse of the Doi-Naganuma lifting from elliptic mod-
ular forms to Hilbert modular forms and the Fourier coefficients of the elliptic
modular forms were interpreted by Hirzebruch and Zagier as the intersection
numbers of modular curves on these modular surfaces.

It is interesting to note the parallel to the situation of a century earlier, when
the modern theory of Riemann surfaces was brought into play in order to
understand the spaces on which the modular functions live. But for a mature
arithmetic theory of modular forms the full force of the newly developed
algebraic geometry was needed. Here we think of Grothendieck’s theory of
moduli functors and their representability and Mumford’s results in geometric
invariant theory for the moduli spaces of abelian varieties, the compactification
theory of Mumford c.s. and a version over the integers that was provided by
Chai and Faltings.

Another instance where the power of algebraic geometry was brought to
bear is the beautiful theorem of Gross and Zagier relating derivatives of
L-functions of modular forms at the center of the critical strip to the heights of
Heegner points on modular curves.

Around 1985, Frey came up with the idea and some arguments that
the modularity conjecture should contradict the marvelous properties of the
“ABC-elliptic curve” over Q associated by Hellegouarch to a hypothetical
solution of the Fermat equation. Hence, Fermat’s last theorem should be a
consequence of the modularity conjecture, which therefore attracted much
attention. Soon thereafter, in [16], Serre formulated a conjecture on irre-
ducible odd continuous representations ρ : Gal(Q/Q) → GL(2, Fp), where
odd means that the determinant of complex conjugation equals −1. The pre-
cise form of this conjecture was to make clear the “epsilon” that was needed
apart from the modularity conjecture to prove Fermat’s last theorem. Serre
conjectured that every such ρ can be obtained from a normalised eigenform
f = ∑

a(n)qn of weight k(ρ) on �1(N (ρ)), with k(ρ) and N (ρ) given
in terms of the ramification of ρ. The pair (N (ρ), k(ρ)) was intended to be
the minimal possible. After a first step by Mazur, Ribet was able to estab-
lish the “epsilon”, and this motivated Wiles to set out to prove a form of the
modularity conjecture that would suffice to prove Fermat’s last theorem. The
realization of this by Wiles in 1994, with the help of Taylor, is certainly one
of the triumphs of 20th century mathematics and of the theory of modular
forms.
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Wiles’s breakthrough, now about fifteen years ago, was based on the study
of deformations of Galois representations, a theory initiated by Mazur. The
most striking of his results is that completions of Hecke algebras can often be
interpreted as universal deformation rings, where one considers deformations
whose ramification is suitably restricted at all primes.

Since then, these deformation theoretic methods have been generalised and
have led to spectacular progress. The full modularity conjecture for elliptic
curves over Q was proved in [6]. Here, the formulation of the restrictions on
the ramification uses the local Langlands correspondence for GL(2), as well
as Fontaine’s theory of p-adic Galois representations. Fontaine and Mazur
have conjectured that all irreducible continuous p-adic representations of the
Galois group of Q that are unramified at almost all primes and are everywhere
potentially semi-stable should come from geometry, and, according to the
Langlands program, from automorphic representations. Breuil started inves-
tigating the possibility of a p-adic local Langlands correspondence for p-adic
Galois representations of p-adic fields; here the question is what one should
put on the automorphic side. Taylor obtained potential modularity results for
two-dimensional p-adic Galois representations over totally real fields, thereby
proving meromorphic continuation and functional equation for the associated
L-functions; see [22] and [23], and [21] (the long version). It came as a sur-
prise to many that these methods could be applied in the GL(n)-case, when
in March of 2006 Taylor, Clozel, Harris and Shepherd-Barron announced their
proof of the Sato-Tate conjecture for elliptic curves over Q with multiplica-
tive reduction at at least one prime (see the preprints on Taylor’s home page).
Dieulefait and Wintenberger noticed that Taylor’s potential modularity results
made it possible to construct compatible systems of l-adic representations even
in cases where modularity was not known. This led to the proof, in 2007, by
Khare and Wintenberger, using important results of Kisin, of Serre’s conjec-
ture that is mentioned above (see the preprints on Khare’s home page). All this
is more than many had been inclined to hope.

Of course there has been progress on the subject of modular forms and the
Langlands program that is independent of Wiles’s breakthrough. In this respect
we should mention the work of Drinfeld, who proved the global Langlands cor-
respondence for GL(2) in the function field case in the 1970’s, and Lafforgue,
who generalised that to GL(n) in 2002. In the 1970’s, Mazur did groundbreak-
ing work concerning rational points on modular curves and their Jacobians.
Harris and Taylor proved the local Langlands correspondence for GL(n) over
p-adic fields around 2000, using the geometry of certain Shimura varieties.
And there must be much more, that we, the editors of this volume, are not
aware of because of our own limited background. For example, it is clear that
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in the results described above, base change results are used, trace formulas,
properties of L-functions of pairs, fundamental lemmas and what not. There
are important developments that we have not even mentioned, like the work of
Borcherds. We hope that readers will enjoy this introduction nevertheless, and
will excuse us for any omissions.

For an algebraic geometer the main lure of modular forms may come from
from the fact that algebraic varieties defined over a number field are a natural
source for modular forms. Indeed, according to Langlands the correspond-
ing Galois representations should all come from automorphic representations.
The developments of the recent years have thus tied modular forms very
closely to arithmetic algebraic geometry and this has been fruitful to both
algebraic geometry and the theory of modular forms. But further progress cer-
tainly requires a better understanding of modular forms on other groups than
GL(2). The groups that correspond to modular varieties parametrizing algebro-
geometric objects offer maybe the best hopes, as algebraic geometry may bring
further clues. But even well-studied moduli spaces still seem far beyond our
grasp. For example, what automorphic forms occur in the cohomology of the
moduli space Mg of curves?

The goals as formulated by the Langlands conjectures may seem very dis-
tant, but recent developments as in the work of Laumon-Ngô and Ngô on the
“fundamental lemma” yield the prospect of rapid advances in the near future.
Apart from that modular forms appear again and again at unexpected places,
for example in new developments in mathematical physics like string theory,
showing that the topic is still full of life.
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[14] R. P. Langlands: Letter to André Weil, January 1967. Available at www.sun-
site.ubc.ca/DigitalMathArchive/Langlands/intro.html

[15] N. Schappacher: On the history of Hilbert’s twelfth problem: a comedy of errors.
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