
Exam Algebraic Geometry: Solutions
June 10, 2015

Please do five of the following six exercises. If you do all six the five best solutions will
be counted. In the following k denotes an algebraically closed field.

1)
i) Give the definition of a rational map of algebraic varieties.
ii) Show that the variety X in An defined by x1x2 · · ·xn = 1 is birationally equivalent

with An−1.
iii) Give an example of two birationally equivalent affine varieties of dimension 3 that

are not isomorphic.

Solution:
i) See Definition 5.13.
ii) Let U ⊂ An−1 be the open subset given by x1x2 · · ·xn−1 6= 0. Let φ:U → X be

the morphism

(x1, . . . , xn−1) 7→ (x1, . . . , xn−1, 1/(x1x2 · · ·xn−1))

and let ψ:X → U be the morphism

(x1, . . . , xn) 7→ (x1, . . . , xn−1).

Then φ and ψ are each other’s inverses. Hence X and An−1 are birationally equiv-
alent.

iii) Let Y = A3 and Z = (A1 − {0}) × A2. Then Y and Z are affine varieties of
dimension 3 (note that Z is the open subset D(x) of Y , cf. Prop. 2.20). Clearly,
they are birationally equivalent. The coordinate ring of Y is k[x, y, z], in which no
non-constant element has an inverse. But x has an inverse in the coordinate ring
of Z, so Y and Z are not isomorphic.

2) Let X be a variety and P ∈ X a point of X.
i) Give the definition of the local ring OX,P of P .
ii) Assume that X is a curve. Show: P is a non-singular point of X if and only if

OX,P is a discrete valuation ring.

Solution:
i) Cf. Definition 2.5, Def. 4.7, Exa. 4.8 (i), Def. 5.4, Def. 5.9.
ii) Cf. Theorem A4.20 and Corollary A4.21.



3) We assume that the characteristic of k is 0. Let X be the projective plane curve
given by the homogeneous equation

(y2 + xz)2 + y3z = 0.

i) Determine the singular points of X.
ii) Show that the map from P1 to P2 given by

(s : t) 7→ (st3 − t4 : −s2t2 : s4)

defines a morphism with X as its image.
iii) Show that the induced map from P1 to X is the normalization of X in its function

field.
iv) For each singular point P of X, find an element contained in the normalization of

OX,P , but not in OX,P itself.

Solution:
i) Cf. 7.16: we can use the projective tangent space ofX at P ; put F = (y2+xz)2+y3z,

then the singular points are given by the simultaneous vanishing of ∂F/∂x, ∂F/∂y,
and ∂F/∂z; this implies that F vanishes as well (Euler’s identity; char. 0). Now
∂F/∂x = 2(y2 + xz)z. Note that z = 0 implies y2 + xz = 0. So y2 + xz = 0 is
forced; then y3z = 0, so y = 0 or z = 0. This gives the two points (1 : 0 : 0) and
(0 : 0 : 1) in P2.

ii) The map is clearly a morphism from P1 to P2, since the 3 polynomials st3 − t4,
−s2t2, and s4 are of the same degree and don’t vanish simultaneously on P1. We
also verify that the image is contained in X, since y2 +xz = s5t3 and y3z = −s10t6.
The line z = 0 is not contained in X, so the open part z 6= 0 is dense and has affine
equation (y2 + x)2 + y3 = 0 after setting z = 1 (which we may). This is clearly an
irreducible curve: after applying the isomorphism (x, y) 7→ (x+ y2, y) the equation
becomes x2 +y3 = 0, the standard cuspidal curve, image of A1 under t 7→ (t3,−t2),
hence irreducible (cf. Exa. 2.24). So X is irreducible as well, hence the nonconstant
map is surjective.

iii) Certainly, P1 is normal, and the map is finite and onto. But we also need to check
that it induces a birational equivalence. This, however, follows from what was
written above: setting s = 1, the map becomes t 7→ (t3 − t4,−t2), exactly the map
we used to prove that X is irreducible (via the standard cuspidal curve, birationally
equivalent to A1).

iv) On the standard cuspidal curve above, w = x/y is such an element, satisfying
the monic equation w2 + y = 0. Similarly, on (y2 + x)2 + y3 = 0 we have the
element w = (y2 + x)/y satisfying w2 + y = 0; w is in the normalization of the
local ring at (0 : 0 : 1), but not in the local ring itself. At the other singular point
(1 : 0 : 0), we may set x = 1 and obtain the affine equation (y2+z)2+y3z = 0. Now
w = (y2 + z)/y does what we want: it satisfies w2 + yz = 0, but is not contained
in the local ring, since z/y isn’t.



4) We assume that k has characteristic 0. Let X ⊂ A4 be the algebraic subset given by
the equations

xy − z2 = x2w3 − y6 = 0.

In this exercise we will show that X is irreducible.
i) Explain why every irreducible component of X has dimension at least 2.
ii) Show that the open subset U of X given by x 6= 0 is dense in X.
iii) Show that U is isomorphic to an open subset of the hypersurface Y ⊂ A3 (with

coordinates (x, z, w)) given by the equation

x8w3 − z12 = 0.

iv) Show that the morphism from A2 to Y given by

(a, b) 7→ (a3, a2b, b4)

is onto. Conclude that Y is irreducible. Conclude that X is irreducible as well.

Solution:
i) We are intersecting 2 hypersurfaces. Each irreducible component of a hypersur-

face has codimension 1 (Prop. 6.8 (ii)). Applying the affine dimension theorem
Prop. 6.10 (i) finishes the proof.

ii) In a variety, every nonempty open subset is dense. But we don’t know yet that X
is a variety; we need that X is irreducible for that, which is what we are trying to
prove. Concretely, we need to check that the open subset U doesn’t miss an entire
irreducible component. The complement of U is given by x = 0, which (on X)
implies z = 0 and y = 0. This is just the affine line (the w-axis), of dimension 1,
hence (by (i)) not a component. This proves that U is dense in X.

iii) On U , we can write y = z2/x, giving the equation x2w3−z12/x6 = 0, or equivalently
(as long as x 6= 0) x8w3 − z12 = 0. Clearly, U is then isomorphic with the open
subset x 6= 0 of the hypersurface x8w3 − z12 = 0 in A3 with coordinates (x, z, w).
(As above, this open subset is dense.)

iv) We can clearly find a with a3 = x and b with b4 = w. Note that a is unique up to
a third root of 1, and b up to a fourth root of 1 (popular notation like 3

√
x tends

to obscure this!). Then z12 = a24b12, so z = ζa2b, where ζ is a 12th root of 1.
Since a2 is also a third root of 1, we finish the first step by noting that any 12th
root of 1 can be written as a product of a third root of 1 and a fourth root of 1:
the morphism is onto. Since A2 is irreducible, Y is irreducible as well (from the
definitions). Then U is irreducible and hence its closure X as well.



5) Let G = Grass(2, 4) = G(1,P3) be the Grassmannian of lines in P3.
i) Let ` be a given line in P3. Show that there exists a natural subvariety G` of
G corresponding to the lines in P3 that meet `. Determine the dimension of this
subvariety.

Recall that G can be given as a subvariety of P5 (with coordinates (X01 : X02 : X03 :
X12 : X13 : X23)), namely, the hypersurface with equation

X01X23 −X02X13 +X03X12 = 0.

The line in P3 through (a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3) corresponds to the point

(a0b1 − a1b0 : a0b2 − a2b0 : a0b3 − a3b0 : a1b2 − a2b1 : a1b3 − a3b1 : a2b3 − a3b2).

ii) Let ` be the line through (0 : 0 : 1 : 0) and (0 : 0 : 0 : 1). Show that G` is given by
intersecting G with a linear subspace of P5.

iii) Argue why there should be two lines meeting four given lines in general position.

Solution:
i) It is a closed condition for a line in P3 to meet `. So there is a closed subset G`

of G corresponding to such lines. To see that G` is irreducible, we may argue as
follows. There exists a natural morphism from P3 × P3 \ ∆ (the complement of
the diagonal) onto G: it sends a pair of distinct points in P3 to the point of G
corresponding to the unique line through the two points. The fiber over a point
of G corresponding to a line consists of the pairs of distinct points on the line.
This recomputes the dimension of G as 6− 2 = 4. Similarly, there exists a natural
morphism from ` × P3 \ ∆(`) onto G`: it sends a pair of distinct points (at least
one on `) to the unique line through the points. It follows that G` is irreducible.
The fiber over any point of G` not corresponding to ` itself consists (essentially) of
the points on the corresponding line that don’t lie on `. We can conclude that the
dimension of G` is 3. Alternatively, consider a plane P containing `. Any line in
P3 meets P (proj. dim. thm.). The lines that meet P in a point of ` form a closed
subset of G of codimension 1.

ii) We see that ` corresponds to the point (0 : 0 : 0 : 0 : 0 : 1) of G ⊂ P5. A general
point of ` has coordinates (0 : 0 : p : q). The only (Plücker) coordinate guaranteed
to vanish for a line through such a point is X01. Conversely, if a0b1 − a1b0 = 0,
then the line through (a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3) meets `. Thus, G` is
given by intersecting G with the hyperplane X01 = 0.

iii) Let p, q, r, and s be four lines in general position. Each of Gp, Gq, Gr, and Gs is
given by intersecting G with a hyperplane (say Hp, . . . ,Hs). The lines meeting p, q,
r, and s correspond to the intersection of Gp, Gq, Gr, and Gs, i.e., the intersection
of G with the intersection of Hp, Hq, Hr, and Hs, i.e., the intersection of G with
a line in P5. But G itself is a quadric hypersurface; intersecting it with a line, we
expect two points of intersection (which could coincide, however; an extra argument
is required to exclude this).



6) Let X be an irreducible complete non-singular curve and let D =
∑

P nPP be a
divisor on X. Define for an open set U of X

L(D)(U) = {f ∈ k(X)∗ : div(f |U) +D|U ≥ 0} ∪ {0} ,

where D|U =
∑

P∈U nPP is the restriction of D to U .
i) Show that L(D)(U) is a O(U)-module.
ii) Show that U 7→ L(D)(U) defines a sheaf on X.
iii) Show that L(D)(X) = (0) if degD < 0.
iv) Show that L(D)(X) is a k-vector space of dimension ≤ degD + 1.

Solution:
i) It is clearly a sub-k vector space of k(X) (cf. Divisors, 1.7 (i)), hence an abelian

group. We can multiply with regular functions on U since div(g) ≥ 0 (as divisor
on U) for g ∈ O(U).

ii) For each open U we have an abelian group L(D)(U); we also have natural restriction
maps, so we have a presheaf. (As usual, the value on ∅ is {0}.) We need to check the
sheaf axiom. Let U be a nonempty open and {Uα}α∈I an open cover. An element of
k(X) is determined by its restriction to any nonempty Uα, so uniqueness is obvious.
The existence of a rational function on U is also clear. Its divisor on U fulfils the
desired inequality: we need to check the inequality at every point of U , but every
point is contained in some Uα.

iii) Divisors, Prop. 1.7 (iii).
iv) Divisors, Prop. 1.7 (iv).


