TABLES OF CURVES WITH MANY POINTS

Gerard van der Geer and Marcel van der Vlugt

Abstract

These tables record results on curves with many points over finite fields. For relatively small genus $(0 \leq g \leq 50)$ and q a small power of 2 or 3 we give in two tables the best presently known bounds for $N_{q}(g)$, the maximum number of rational points on a smooth absolutely irreducible projective curve of genus g over a field \mathbb{F}_{q} of cardinality q. In additional tables we list for a given pair (g, q) the type of construction of the best curve so far and we give a reference to the literature where such a curve can be found.

Updated Version October 7, 2009
[A NEW WEBSITE IS AVAILABLE AT www.manypoints.org]

0. Introduction

In recent years the question how many points a curve of genus g over a finite field \mathbb{F}_{q} can have, has attracted a lot of attention. This was motivated partly by possible applications in coding theory and cryptography, but just as well by the fact that the question represents an attractive mathematical challenge.

It is well known that a smooth absolutely irreducible projective curve of genus g over a finite field \mathbb{F}_{q} can possess at most $q+1+2 g \sqrt{q}$ rational points. By a curve we shall mean in this paper a smooth absolutely irreducible projective curve defined over a finite field. The bound mentioned is the celebrated Hasse-Weil bound, proved by Hasse for $g=1$ and by Weil in general. We denote by $N_{q}(g)$ the maximum number of rational points on a curve of genus g over \mathbb{F}_{q}. The Hasse-Weil bound implies

$$
N_{q}(g) \leq q+1+[2 g \sqrt{q}],
$$

where $[x]$ is the integer part of $x \in \mathbb{R}$.
After Weil proved his bound around 1940 the question how many rational points may lie on a curve over a finite field \mathbb{F}_{q} remained untouched for many years. In 1980 Goppa came up with the beautiful idea to associate an error-correcting code to a linear system on a curve over a finite field, see [Go]. In order to construct good codes one needs curves with many points and thus Goppa's work led to a revival of interest in rational points on curves over finite fields. Applications in cryptography and recent constructions of quasi-random point sets also require curves with many points and added a further impetus to work in the field.

[^0]In 1981 Ihara showed in [I] by a simple and elegant argument that

$$
\begin{equation*}
N_{q}(g) \leq q+1+\left[\left(\sqrt{(8 q+1) g^{2}+4\left(q^{2}-q\right) g}-g\right) / 2\right] . \tag{1}
\end{equation*}
$$

For $g>(q-\sqrt{q}) / 2$ this bound is better than Weil's bound and gives the asymptotic bound

$$
\begin{equation*}
A(q):=\lim \sup _{g \rightarrow \infty} \frac{N_{q}(g)}{g} \leq \sqrt{2 q+\frac{1}{4}}-\frac{1}{2} \tag{2}
\end{equation*}
$$

Ihara also showed that if q is a square one has $A(q) \geq \sqrt{q}-1$ using a sequence of modular curves. Refining Ihara's idea to derive (1) Drinfeld and Vladut proved that

$$
\begin{equation*}
A(q) \leq \sqrt{q}-1 \tag{3}
\end{equation*}
$$

In [S1] Serre started the investigation of the actual value of $N_{q}(g)$. One has $N_{q}(0)=q+1$. For $g=1,2$ there are explicit formulas for $N_{q}(g)$. From [S2],[S4] we quote the following result:
Proposition. Let $q=p^{m}$ and set $\mu=[2 \sqrt{q}]$. For $g=1$ one has $N_{q}(1)=q+1+\mu$, except when m is odd, $m \geq 3$ and p divides μ, in which case we have $N_{q}(1)=q+\mu$. Similarly, for $g=2$ we have $N_{q}(2)=q+1+2 \mu$ except in the following cases:
i) $N_{4}(2)=10, N_{9}(2)=20$;
ii) m odd, p divides μ;
iii) m odd and q of the form $x^{2}+1, x^{2}+x+1$ or $x^{2}+x+2$ for $x \in \mathbb{Z}$.

In the cases ii) and iii) we have $N_{q}(2)=q+2 \mu$ if $2 \sqrt{q}-\mu>(\sqrt{5}-1) / 2$ or $N_{q}(2)=q+2 \mu-1$ else.

For $g=3$ one can find the values of $N_{q}(3)$ in [S4] for $q \leq 19$ and in [T] for $q<100$.

In [S1] Serre used a little arithmetic to show that the Hasse-Weil bound may be sharpened to

$$
N_{q}(g) \leq q+1+g[2 \sqrt{q}] .
$$

In the same paper Serre introduced the idea of using a 'formule explicite' in analogy with number theory for obtaining a better upper bound for $N_{q}(g)$. Oesterlé used methods from linear programming to perfect this idea, see [S4]. The refinements of the Hasse-Weil bound by Ihara, Serre and Oesterlé were obtained by purely arithmetical considerations on the eigenvalues of Frobenius. For a curve C over \mathbb{F}_{q} of genus g the difference

$$
\delta=(q+1+g[2 \sqrt{q}])-\# C\left(\mathbb{F}_{q}\right)
$$

is called the defect of the curve. By a combination of arithmetic and geometric arguments the non-existence of curves with small defect for a wide range of pairs (g, q) was proved in a series of papers by various methods: $[\mathrm{F}-\mathrm{T}],[\mathrm{H}-\mathrm{L} 1, \mathrm{H}-\mathrm{L} 2],[\mathrm{K} ̈]$, [K-T], [L2], [L3], [Sa], [S4], [S-V].

In the tables we shall use as upper bound for $N_{q}(g)$ the best bound that the estimates of Hasse-Weil, Ihara, Serre and Oesterlé provide combined with the sharpenings coming from the papers just mentioned.

In order to test how good these bounds really are one tries to come as close to these bounds as one can by constructing curves with as many points as possible.

With an eye towards feasibility of applications it is important to have such curves in a form as explicit as possible.

The methods used for the construction of curves with many points are rather diverse, but roughly speaking one can distinguish the following approaches:
I. Methods from general class field theory;
II. Methods from class field theory based on Drinfeld modules of rank 1;
III. Fibre products of Artin-Schreier curves;
IV. Towers of curves with many points;
V. Miscellaneous methods such as:

1) formulas for $N_{q}(1)$ and $N_{q}(2)$;
2) explicit curves, e.g. Hermitean curves, Klein's quartic, Artin-Schreier curves, Kummer extensions, complete intersections or curves obtained by computer search;
3) elliptic modular curves $X(n)$ associated to the full congruence subgroups $\Gamma(n)$;
4) quotients of curves with many points.

Methods from general class field theory exploit subfields of Hilbert class fields or more generally of ray class fields of the function field of a given curve C in which a substantial number of the rational points of C split completely. General class field theory is a powerful weapon, but has as its drawback that often it produces a mere existence result and not an explicit curve.

Employing properties of Drinfeld modules of rank 1 in the case where the base curve C is the projective line \mathbb{P}^{1} one can produce good subfields of cyclotomic function fields which have the advantage of being explicit. For general base curves the curves produced correspond to subfields of narrow ray class fields and explicit forms of these function fields are then much harder to find.

The fibre product method yields defining equations for the curves thus constructed. In the category IV one finds mainly towers consisting of a combination of Kummer and Artin-Schreier extensions or composita of Kummer extensions. The function fields are explicit.

1. The Tables

For $g \leq 50$ and for $q=2^{m}$ with $1 \leq m \leq 7$ and $q=3^{m}$ with $1 \leq m \leq 4$ we present tables which list values of $N_{q}(g)$ or an interval in which $N_{q}(g)$ lies. Note that $g=50$ is the largest value for which the actual value $N_{2}(g)$ is known. We therefore restricted to $g \leq 50$. Of course $N_{q}(0)=q+1$ for all q and it is omitted from the tables. If the precise value of $N_{q}(g)$ is not known we either give an interval $[a, b]=\left[a_{q}(g), b_{q}(g)\right]$ or nothing. The meaning of the interval $[a, b]$ is: we know that there exists a curve with at least a rational points over \mathbb{F}_{q} and the best upper bound by Hasse-Weil, Serre, Ihara, Oesterlé or other means says $N_{q}(g) \leq b$. In the lion's share of the cases the value of a represents a curve with exactly a rational points; in about 20 cases (mostly constructed with method II) a represents a lower bound for $N_{q}(g)$. Sometimes we entered no value. This happens if no curve with at least $[b / \sqrt{2}]$ rational points is known, i.e. if

$$
a_{q}(g)<\left[b_{q}(g) / \sqrt{2}\right] .
$$

The reason for this is that for $g \leq 50$ in many cases the upper bound $b_{q}(g)$ is Ihara's bound (1). Since the asymptotic bound (3) of Drinfeld-Vladut is approximately $1 / \sqrt{2}$ times the asymptotic Ihara bound (2) we think it is reasonable to put this qualification requirement for $g \leq 50$ to filter out curves which should be considered 'poor'.

Two main tables 'Table $p=2$ ' and 'Table $p=3$ ' present values of the function $N_{q}(g)$ or an interval in which $N_{q}(g)$ lies. In additional tables $q=x$: sources we list the construction method of a curve producing the value of $a_{q}(g)$ and the source where this curve occurs first.

Remarks. i) For $q=2$ one can find explicit curves realizing the lower bound for $g \in\{5,6,7,8,9,12,13,14,15\}$ in [N-X2], for $g=10$ in [G-V7] and for $g=11$ in [N-X1]. For $q=3,4, g=4$ there are explicit curves in [N-X3].
ii) A result communicated to us by R. Schoof (see [G-V4]) gives values for the lower bound $a_{q}(g)$ for the pairs $(q=2, g \in\{26,32,33,40,46,47,48\}),(q=4, g \in$ $\{6,16,44,45\})$ and $(q=8, g \in\{16,23,45\})$.
iii) The modular curves $X(9), X(11)$ and $X(13)$ yield the results for $(q=$ $4, g \in\{10,26,50\})$ and $X(8), X(11)$ and $X(13)$ yield the results for $(q=9, g \in$ $\{5,26,50\})$.

The results collected in our tables represent the work of many mathematicians. We tried to give credit to whom it is due, but may have failed due to ignorance. A closer look at the tables will convince the reader that there is still ample room for improvement. The tables should be seen as an attempt to record the state of the art. If the reader knows an improvement of an entry we shall appreciate if he/she let us know so that we can update or correct the tables.

Acknowledgements. We would like to thank R. Auer, H. Borges, B. Brock, A. Brouwer, I. Duursma, N. Elkies, A. Garcia, A. Garzon, M. Gebhardt, M. Grassl, E. Howe, M. Kawakita, A. Keller, A. Köhnlein, G. Korchmáros, K. Lauter, I. Luengo, H. Niederreiter, F. Özbudak, C. Ritzenthaler, D. Savitt, R. Schoof, R. Schürer, A. Schweizer, S. Sémirat, J.-P. Serre, V. Shabat, H. Stichtenoth, F. Torres, C. P. Xing and M. Zieve for communicating results to us.

Table $\mathrm{p}=2$.

$g \backslash q$	2	4	8	16	32	64	128
1	5	9	14	25	44	81	150
2	6	10	18	33	53	97	172
3	7	14	24	38	64	113	192
4	8	15	25	45	$71-74$	129	215
5	9	17	$29-30$	$49-53$	$83-85$	$132-145$	$227-234$
6	10	20	$33-35$	65	$86-96$	161	$243-258$
7	10	$21-22$	$34-38$	$63-69$	$98-107$	177	$262-283$
8	11	$21-24$	$35-42$	$62-75$	$97-118$	$169-193$	$276-302$
9	12	26	45	$72-81$	$108-128$	209	$288-322$
10	13	27	$42-49$	$81-87$	$113-139$	225	$296-345$
11	14	$26-29$	$48-53$	$80-91$	$120-150$	$201-236$	$294-366$
12	$14-15$	$29-31$	$49-57$	$88-97$	$129-161$	257	$321-388$
13	15	33	$56-61$	$97-102$	$129-172$	$225-268$	
14	$15-16$	$32-35$	65	$97-107$	$146-183$	$241-284$	$353-437$
15	17	$35-37$	$57-67$	$98-113$	$158-194$	$258-300$	$386-455$
16	$17-18$	$36-38$	$56-71$	$95-118$	$147-204$	$267-316$	
17	$17-18$	40	$63-74$	$112-123$	$154-212$		
18	$18-19$	$41-42$	$65-77$	$113-129$	$161-220$	$281-348$	
19	20	$37-43$	$60-80$	$129-134$	$172-228$	$315-364$	
20	$19-21$	$40-45$	$76-83$	$127-139$	$177-236$	$342-380$	
21	21	$44-47$	$72-86$	$129-145$	$185-243$	$281-396$	
22	$21-22$	$42-48$	$74-89$	$129-150$		$321-412$	
23	$22-23$	$45-50$	$68-92$	$126-55$			
24	$22-23$	$4-52$	$81-95$	$129-161$	$225-267$	$337-444$	$513-653$
25	24	$51-53$	$86-97$	$144-165$		$408-460$	
26	$24-25$	55	$82-100$	$150-171$		$425-476$	
27	$24-25$	$52-56$	$96-103$	$156-176$	$213-290$	$416-492$	
28	$25-26$	$54-58$	$97-106$	$145-181$	$257-298$	513	$577-745$
29	$25-27$	$52-60$	$97-109$	$161-186$	$227-305$		
30	$25-27$	$53-61$	$96-112$	$162-191$	$273-313$	$464-535$	$609-784$
31	$27-28$	$60-63$	$89-115$	$168-196$		$450-547$	$578-807$
32	$27-29$	$57-65$	$90-118$				
33	$28-29$	$65-66$	$97-121$	$193-207$		$480-570$	
34	$27-30$	$6-68$	$98-124$	$183-212$		$462-581$	
35	$29-31$	$6-69$	$12-127$	$187-127$	$253-351$	$510-593$	
36	$30-31$	$64-71$	$112-130$	$185-222$		$490-604$	$705-917$
37	$30-32$	$66-72$	$121-132$	$208-227$		$540-616$	
38	$30-33$	$64-74$	$129-135$	$193-233$	$291-375$	$518-627$	
39	33	$65-75$	$120-138$	$194-238$		$494-638$	
40	$32-34$	$75-77$	$103-141$	$225-243$	$293-390$	$546-649$	
41	$33-35$	$65-78$	$118-144$	$220-249$	$308-398$	$560-661$	
42	$33-35$	$75-80$	$129-147$	$209-254$	$307-405$	$574-672$	
43	$34-36$	$72-81$	$116-150$	$226-259$	$306-413$	$546-684$	
44	$33-37$	$68-83$	$130-153$	$226-264$	$325--420$	$516-695$	
45	$33-37$	$80-84$	$142-156$	$242-688$	$313-428$	$572-706$	
46	$3-38$	$81-86$	$129-158$	$243-273$		$585-717$	
47	$36-38$	$73-87$	$126-161$			$598-729$	
48	$34-39$	$80-89$	$128-164$	$243-282$		$564-740$	
49	$36-40$	$81-90$	$130-167$	$213-286$		$624-751$	$913-1207$
50	40	$91-92$	$130-170$	$255-291$		$588-762$	

Table $\mathrm{p}=3$.

$g \backslash q$	3	9	27	81
1	7	16	38	100
2	8	20	48	118
3	10	28	56	136
4	12	30	64	154
5	13	$32-35$	$72-75$	$160-172$
6	14	$35-40$	$76-85$	190
7	16	$40-43$	$82-95$	$180-208$
8	$17-18$	$42-47$	$92-105$	226
9	19	$48-50$	$99-113$	244
10	$20-21$	54	$94-123$	$226-262$
11	$20-22$	$55-58$	$100-133$	$220-280$
12	$22-23$	$56-62$	$109-143$	298
13	$24-25$	$64-65$	$136-153$	$256-312$
14	$24-26$	$56-69$		$278-330$
15	28	$64-73$	$136-170$	$292-348$
16	$27-29$	$74-77$	$144-178$	370
17	$25-30$	$74-81$	$128-185$	$288-384$
18	$28-31$	$67-84$	$148-192$	$306-401$
19	32	$84-88$	$145-199$	
20	$30-34$	$70-91$		
21	$32-35$	$88-95$	$163-213$	$352-455$
22	$30-36$	$78-98$		
23	$32-37$	$92-101$		
24	$31-38$	$91-104$	$208-234$	
25	$36-40$	$96-108$	$196-241$	$392-527$
26	$36-41$	$110-111$	$200-248$	$500-545$
27	$39-42$	$104-114$	$208-256$	
28	$37-43$	$105-117$		
29	$42-44$	$104-120$	$196-269$	
30	$38-46$	$91-123$	$196-276$	$551-617$
31	$40-47$	$120-127$		$460-635$
32	$40-48$	$92-130$		
33	$46-49$	$128-133$	$220-297$	$576-671$
34	$46-50$	$111-136$		$594-689$
35	$47-51$	$119-139$		$612-707$
36	$48-52$	$118-142$	$244-318$	730
37	$52-54$	$126-145$	$236-325$	$648-742$
38		$105-149$		$629-755$
39	$48-56$	$140-152$	$271-340$	$646-768$
40	$56-57$	$118-155$	$273-346$	$663-781$
41	$50-58$	$140-158$		$680-795$
42	$52-59$	$122-161$	$280-360$	$697-808$
43	$56-60$	$147-164$		$672-821$
44	$47-61$	$119-167$	$278-374$	
45	$54-62$	$136-170$		$704-847$
46	$55-63$	$162-173$		$720-859$
47	$54-65$	$154-177$	$299-395$	$690-872$
48	$55-66$	$163-180$	$325-402$	$752-885$
49	$64-67$	$168-183$	$316-409$	$768-898$
50	$63-68$	$182-186$	$312-416$	$784-911$

$q=2:$ sources

genus	N	type	source
1	5	$\mathrm{~V}-1$	$\mathrm{~S} 1,4$
2	6	$\mathrm{~V}-1$	$\mathrm{~S} 1,4$
3	7	$\mathrm{~V}-2$	D
4	8	$\mathrm{~V}-2$	$\mathrm{~S} 1,4$
5	9	I	$\mathrm{S} 1,4$
6	10	I	$\mathrm{S} 1,4$
7	10	I	$\mathrm{S} 1,4$
8	11	I	$\mathrm{S} 1,4$
9	12	I	$\mathrm{S} 1,4$
10	13	I	S 5
11	14	I	S 5
12	$14-15$	I	$\mathrm{S} 2,4$
13	15	I	S 5
14	$15-16$	I	$\mathrm{S} 2,4$
15	17	I	$\mathrm{S} 1,4$
16	$17-18$	I	A 1
17	$17-18$	I	$\mathrm{S} 2,4$
18	$18-19$	I	$\mathrm{S} 2,4$
19	20	I	$\mathrm{S} 1,4$
20	$19-21$	I	$\mathrm{S} 2,4$
21	21	I	$\mathrm{S} 1,4$
22	$21-22$	I	Sch
23	$22-23$	I	$\mathrm{X}-\mathrm{N}$
24	$22-23$	I	Ge
25	24	I	$\mathrm{X}-\mathrm{N}$
26	$24-25$	I	$\mathrm{G}-\mathrm{V} 4$
27	$24-25$	I	A 2
28	$25-26$	I	A 1
29	$25-27$	II	$\mathrm{X}-\mathrm{N}$
30	$25-27$	I	A 1
31	$27-28$	II	$\mathrm{X}-\mathrm{N}$
32	$27-29$	I	Ge
33	$28-29$	I	$\mathrm{G}-\mathrm{V} 4$
34	$27-30$	II	$\mathrm{X}-\mathrm{N}$
35	$29-31$	I	A 1
36	$30-31$	II	$\mathrm{X}-\mathrm{N}$
37	$30-32$	I	$\mathrm{G}-\mathrm{X}$
38	$30-33$	II	Ke
39	33	I	$\mathrm{S} 1,4$
40	$32-34$	I	$\mathrm{G}-\mathrm{V} 4$
41	$33-35$	I	A 1
42	$33-35$	I	A 1
43	$34-36$	III	Ge
44	$33-37$	I	A 1
45	$33-37$	III	$\mathrm{G}-\mathrm{V} 5$
46	$34-38$	I	$\mathrm{G}-\mathrm{V} 4$
47	$36-38$	I	$\mathrm{G}-\mathrm{V} 4$
48	$34-39$	I	$\mathrm{G}-\mathrm{V} 4$
	$36-40$	II	$\mathrm{X}-\mathrm{N}$
	I	$\mathrm{S} 1,4$	
20			
2			

$$
q=4: \text { sources }
$$

genus	N	type	source
1	9	V-1	S2,4
2	10	V-1	S2,4
3	14	V-2	S2,4
4	15	IV	S3
5	17	III	St2
6	20	I	G-V4
7	21-22	II	N-X3
8	21-24	I	N-X3
9	26	II	N-X4
10	27	V-3	G-V4
11	26-29	III	G-V5
12	29-31	I	A1
13	33	III	St2
14	32-35	III	G-V5
15	35-37	I	Ge
16	36-38	I	G-V4
17	40	II	N-X4
18	41-42	II	N-X7
19	37-43	I	A1
20	40-45	I	A2
21	44-47	IV	P-T
22	42-48	V-2	Gr
23	45-50	I	A2
24	49-52	III	Sh
25	51-53	II	N-X4
26	55	V-3	G-V4
27	52-56	I	Ge
28	54-58	I	Ge
29	52-60	III	Sh
30	53-61	II	N-X7
31	60-63	II	N-X4
32	57-65	I	A1
33	65-66	I	L1
34	65-68	I	G-X
35	64-69	III	Sh
36	64-71	II	N-X4
37	66-72	II	N-X4
38	64-74	III	Sh
39	65-75	III	G-V7
40	75-77	II	N-X4
41	65-78	III	G-V4
42	75-80	I	G-X
43	72-81	II	N-X4
44	68-83	I	G-V4
45	80-84	I	G-V4
46	81-86	II	N-X7
47	73-87	I	A1
48	80-89	I	A2
49	81-90	II	N-X4
50	91-92	V-3	G-V4

$$
q=8: \text { sources }
$$

genus	N	type	source
1	14	V-1	S2,4
2	18	V-1	S2,4
3	24	V-2	S2,4
4	25	III	G-V5
5	29-30	III	G-V4
6	33-35	III	St2
7	34-38	IV	Sem
8	35-42	V-2	B
9	45	II	N-X7
10	42-49	III	Sh
11	48-53	III	G-V5
12	49-57	III	G-V5
13	56-61	III	Sh
14	65	V-4	H-S
15	57-67	V-2	Sh
16	56-71	I	G-V4
17	63-74	V-2	Gr
18	65-77	III	G-V5
19	60-80	III	Sh
20	76-83	I	Ge
21	72-86	III	G-V5
22	74-89	III	Sh
23	68-92	I	G-V4
24	81-95	III	Sh
25	86-97	V-2	G-V8
26	82-100	III	Sh
27	96-103	III	Sh
28	97-106	III	G-V5
29	97-109	III	G-V4
30	96-112	III	Sh
31	89-115	III	Sh
32	90-118	III	Sh
33	97-121	III	Sh
34	98-124	III	Sh
35	112-127	III	Sh
36	112-130	IV	O-T
37	121-132	III	G-V5
38	129-135	III	G-V5
39	120-138	III	Sh
40	103-141	III	Sh
41	118-144	III	Sh
42	129-147	III	G-V5
43	116-150	III	Sh
44	130-153	III	Sh
45	144-156	I	G-V4
46	129-158	III	G-V4
47	126-161	II	Geb
48	128-164	I	A2
49	130-167	II	N-X6
50	130-170	II	N-X6

$q=16$: sources.

genus	N	type	source
1	25	V-1	S2,4
2	33	V-1	S2,4
3	38	V-2	S3,4
4	45	V-2	M-Z-Z
5	49-53	III	G-V4
6	65	V-2	Seg
7	63-69	II	N-X6
8	62-75	V-2	B
9	72-81	II	N-X6
10	81-87	II	N-X6
11	80-91	II	N-X6
12	88-97	I	Ge
13	97-102	III	G-V4
14	97-107	III	G-V4
15	98-113	III	G-V1
16	95-118	IV	Ka
17	112-123	III	G-V5
18	113-129	III	G-V5
19	129-134	V-2	Sh
20	127-139	V-2	G-V8
21	129-145	III	G-V5
22	129-150	III	St2
23	126-155	II	N-X6
24	129-161	III	G-V5
25	144-165	II	N-X6
26	150-171	II	N-X6
27	156-176	I	Ge
28	145-181	III	Sh
29	161-186	III	Sh
30	162-191	III	Do
31	168-196	V	Bor1
32			
33	193-207	I	A1
34	183-212	IV	G-G
35	187-217	I	Ge
36	185-222	II	N-X7
37	208-227	II	N-X7
38	193-233	I	A1
39	194-238	III	Sh
40	225-243	V-2	G-V8
41	220-249	I	Ge
42	209-254	I	A1
43	226-259	II	N-X7
44	226-264	III	Sh
45	242-268	III	G-V5
46	243-273	II	N-X6
47			
48	243-282	V-2	G-Q
49	213-286	V-2	G-V8
50	255-291	II	Geb

$q=32:$ sources
$q=64:$ sources

genus	N	type	source
1	44	V-1	S2,4
2	53	V-1	S2,4
3	64	IV	Sem
4	71-74	V-2	Z
5	83-85	V-2	Z
6	86-96	III	Do
7	98-107	IV	Sem
8	97-118	III	Sh
9	108-128	III	Sh
10	113-139	V-4	G-K-T
11	120-150	IV	Sem
12	129-161	III	G-V1
13	129-172	I	A1
14	146-183	III	Do
15	158-194	V-2	H-Le B
16	147-204	III	Sh
17	154-212	III	Sh
18	161-220	I	A1
19	172-228	III	Sh
20	177-236	III	Sh
21	185-243	III	Sh
22			
23			
24	225-267	V-4	G-K-T
25			
26			
27	213-290	V-4	Du
28	257-298	III	G-V1
29	227-305	III	Sh
30	273-313	III	G-V1
31			
32			
33			
34			
35	253-351	III	G-V5
36			
37			
38	291-375	III	Sh
39			
40	293-390	III	Sh
41	308-398	III	Sh
42	307-405	III	Sh
43	306-413	III	Sh
44	325-420	III	Sh
45	313-428	V-2	G-V8
46			
47			
48			
49			
50			

genus	N	type	source
1	81	V-1	S2,4
2	97	V-1	S2,4
3	113	V-2	Wi
4	129	V-2	Wo
5	132-145	V-2	Z
6	161	III	G-V3
7	177	V-2	Wo
8	169-193	I	A1
9	209	V-4	G-S-X
10	225	V-4	E
11	201-236	III	G-V5
12	257	V-2	Wi
13	225-268	I	A1
14	241-284	I	A1
15	258-300	III	Do
16	267-316	IV	Ka
17			
18	281-348	I	A1
19	315-364	IV	G-V9
20	342-380	I	Ge
21	281-396	III	Sh
22	321-412	I	A1
23			
24	337-444	I	A1
25	408-460	I	Ge
26	425-476	I	Ge
27	416-492	I	Ge
28	513	V-2	H
29			
30	464-535	I	Ge
31	450-547	I	Ge
32			
33	480-570	I	Ge
34	462-581	I	Ge
35	510-593	I	Ge
36	490-604	I	Ge
37	540-616	I	Ge
38	518-627	I	Ge
39	494-638	I	Ge
40	546-649	I	Ge
41	560-661	I	Ge
42	574-672	I	Ge
43	546-684	I	Ge
44	516-695	I	Ge
45	572-706	I	Ge
46	585-717	I	Ge
47	598-729	I	Ge
48	564-740	I	Ge
49	624-751	I	Ge
50	588-762	I	Ge

$q=128:$ sources

genus	N	type	source
1	150	V-1	S2,4
2	172	V-1	S2,4
3	192	IV	Sem
4	215	V-2	Z
5	227-234	V-2	M-Z-Z
6	243-258	V-2	Z
7	262-283	V-2	B
8	276-302	V-2	B
9	288-322	IV	Sem
10	296-345	V-2	B
11	294-366	V-2	B
12	321-388	III	G-V1
13			
14	353-437	III	G-V3
15	386-455	III	Do
16			
17			
18			
19			
20			
21			
22			
23			
24	513-653	III	G-V1
25			
26			
27			
28	577-745	III	G-V1
29			
30	609-784	III	G-V3
31	578-807	III	Do
36	705-917	V-4	G-K-T
49	913-1207	V-4	G-K-T

$q=3:$ sources
$q=9:$ sources

genus	N	type	source
1	7	V-1	S1,4
2	8	V-1	S1,4
3	10	V-2	S2,4
4	12	V-2	S3
5	13	V-2	R
6	14	IV	N-X3
7	16	II	N-X3
8	17-18	V-2	L-L
9	19	III	G-V4
10	20-21	V-2	Gr
11	20-22	I	N-X3
12	22-23	I	N-X3
13	24-25	I	N-X3
14	24-26	IV	N-X3
15	28	III	G-V4
16	27-29	III	G-V4
17	25-30	V-2	Gr
18	28-31	I	Ge
19	32	II	Geb
20	30-34	III	G-V4
21	32-35	IV	N-X5
22	30-36	III	G-V5
23	32-37	V-2	Gr
24	31-38	I	A1
25	36-40	I	N-X5
26	36-41	IV	N-X5
27	39-42	I	N-X5
28	37-43	IV	N-X5
29	42-44	I	N-X5
30	38-46	III	Ge
31	40-47	II	N-X5
32	40-48	II	Geb
33	46-49	I	A1
34	46-50	III	Ge
35	47-51	III	G-V7
36	48-52	I	G-X
37	52-54	I	G-X
38			
39	48-56	I	A2
40	56-57	I	G-X
41	50-58	II	N-X5
42	52-59	II	Geb
43	56-60	I	Ge
44	47-61	I	Ge
45	54-62	I	A2
46	55-63	III	G-V4
47	54-65	I	A1
48	55-66	III	G-V4
49	64-67	II	Geb
50	63-68	I	G-X

genus	N	type	source
1	16	V-1	S2,4
2	20	V-1	S2,4
3	28	V-2	S2,4
4	30	IV	G-V5
5	32-35	V-3	G-V4
6	35-40	II	N-X7
7	40-43	IV	O-S
8	42-47	I	Ge
9	48-50	IV	O-S
10	54	III	G-V5
11	55-58	III	G-V2
12	56-62	II	Geb
13	64-65	V-2	G-V8
14	56-69	III	G-V5
15	64-73	III	Sh
16	74-77	III	G-V5
17	74-81	V-2	G-Q
18	67-84	III	Sh
19	84-88	II	N-X7
20	70-91	II	Schw
21	88-95	IV	O-S
22	78-98	II	N-X7
23	92-101	II	N-X7
24	91-104	II	N-X7
25	96-108	I	Ge
26	110-111	V-3	G-V4
27	104-114	I	Ge
28	105-117	II	N-X7
29	104-120	II	N-X7
30	91-123	III	Sh
31	120-127	V-2	Gr
32	92-130	III	Sh
33	128-133	V-2	G-V8
34	111-136	II	N-X7
35	119-139	I	Ge
36	118-142	III	Sh
37	126-145	I	Ge
38	105-149	II	N-X8
39	140-152	V-2	Gr
40	118-155	III	Sh
41	140-158	I	Ge
42	122-161	II	Schw
43	147-164	I	Ge
44	119-167	III	Sh
45	136-170	V-2	Gr
46	162-173	III	Sh
47	154-177	II	N-X7
48	163-180	III	Sh
49	168-183	II	N-X7
50	182-186	V-3	G-V4

$$
q=27: \text { sources }
$$

$$
q=81: \text { sources }
$$

genus	N	type	source
1	38	V-1	S2,4
2	48	V-1	S2,4
3	56	IV	G-V5
4	64	III	G-V2
5	72-75	IV	G
6	76-85	III	G-V2
7	82-95	IV	Sem
8	92-105	III	G-V5
9	99-113	IV	G
10	94-123	IV	Sem
11	100-133	IV	G
12	109-143	III	G-V2
13	136-153	III	G-V2
14			
15	136-170	I	A1
16	144-178	V-4	Du
17	128-185	I	Ge
18	148-192	V-2	G-G
19	145-199	V-4	C-O
20			
21	163-213	III	G-V6
22			
23			
24	208-234	V-2	G-V8
25	196-241	II	N-X7
26	200-248	I	Ge
27	208-256		Bor2
28			
29	196-269	I	Ge
30	196-276	V-2	G-G
31			
32			
33	220-297	II	N-X7
34			
35			
36	244-318	III	G-V2
37	236-325	V-2	G-G
38			
39	271-340	III	G-V6
40	273-346	I	Ge
41			
42	280-360	II	N-X7
43			
44	278-374	V-2	G-G
45			
46			
47	299-395	III	Sh
48	325-402	I	A1
49	316-409	IV	Ka
50	312-416	II	Geb

genus	N	type	source
1	100	V-1	S2,4
2	118	V-1	S2,4
3	136	V-2	Wi
4	154	V-4	H
5	160-172	IV	Sem
6	190	V-2	Seg
7	180-208	V-2	Ka
8	226	V-4	E
9	244	V-2	Wo
10	226-262	V-2	Wi
11	220-280	V-2	G-G
12	298	III	G-V2
13	256-312	IV	Ka
14	278-330	V-2	G-G
15	292-348	IV	O-S
16	370	V-4	H
17	288-384	V-2	G-V8
18	306-401	IV	O-T
19			
20			
21	352-455	I	A1
22			
23			
24			
25	392-527	V-2	G-G
26	500-545	I	Ge
27			
28			
29			
30	551-617	I	Ge
31	460-635	I	A1
32			
33	576-671	I	Ge
34	594-689	I	Ge
35	612-707	I	Ge
36	730	V-2	St1
37	648-742	I	Ge
38	629-755	I	Ge
39	646-768	I	Ge
40	663-781	I	Ge
41	680-795	I	Ge
42	697-808	I	Ge
43	672-821	I	Ge
44			
45	704-847	I	Ge
46	720-859	I	Ge
47	690-872	I	Ge
48	752-885	I	Ge
49	768-898	I	Ge
50	784-911	I	Ge

References

[A1] R. Auer: Ray class fields of global function fields with many rational places. Acta Arith. 95 (2000), p. 97-122.
[A2] R. Auer: Curves over finite fields with many rational points obtained by ray class fields extensions. In: Algebraic Number Theory (Leiden 2000), Lecture Notes in Computer Science 1838, Springer, Berlin, 2000, p. 127-134.
[Bor1] H. Borges: Private communication, 26 August 2008.
[Bor2] H. Borges: Private communication, 28 September 2009.
[B] B. Brock: Private communication, 2004.
[C-O] E. Çakçak, F. Özbudak: Number of rational places of subfields of the function field of the Deligne-Lusztig curve of Ree type. Preprint, Middle East Technical University, Ankara, 2005.
[D] L.E. Dickson: Geometrical and invariantive theory of quartic curves modulo 2. Am. J. Math. 37 (1915), p. 337-354
[Do] J. Doumen: Master's thesis. Leiden University, 1998.
[Du] I. Duursma: Private communication, 2001.
[E] N. Elkies: Private communication, 1997.
[F-T] R. Fuhrmann, F. Torres: The genus of curves over finite fields with many rational points. Manuscripta Math. 89 (1996), p. 103-106.
[G-G] A. Garcia, A. Garzon: On Kummer covers with many rational points over finite fields. J. Pure Appl. Algebra 185 (2003), p. 177-192.
[G-Q] A. Garcia, L. Quoos: A construction of curves over finite fields. Acta Arithm. 98 (2001), p. 181-195.
[G-S] A. Garcia, H. Stichtenoth: A class of polynomials over finite fields. Finite Fields Appl. 5 (1999), p. 424-435.
[G-S-X] A. Garcia, H. Stichtenoth, C.P. Xing: On subfields of the Hermitian function field. Comp. Math. 120 (2000), p. 137-170.
[G] A. Garzon: Private communication, 2002.
[Geb] M. Gebhardt: Constructing function fields with many rational places via the Carlitz module. Manuscr. Math. 107 (2002), p. 89-99.
[Ge] G. van der Geer: Hunting for curves over finite fields with many points. In preparation.
[G-V1] G. van der Geer, M. van der Vlugt: Curves over finite fields of characteristic 2 with many rational points. C.R. Acad. Sci. Paris 317, Série I (1993), p. 593-597.
[G-V2] G. van der Geer, M. van der Vlugt: Generalized Hamming weights of codes and curves over finite fields with many points. In: Israel Math Conf. Proc. 9 (1996),p. 417-432.
[G-V3] G. van der Geer, M. van der Vlugt: Quadratic forms, generalized Hamming weights of codes and curves with many points. J. of Number Theory 59 (1996), p. 20-36.
[G-V4] G. van der Geer, M. van der Vlugt: How to construct curves over finite fields with many points. In: Arithmetic Geometry, (Cortona 1994), F. Catanese Ed., Cambridge Univ. Press, Cambridge, 1997, p. 169-189.
[G-V5] G. van der Geer, M. van der Vlugt: Tables for the function $N_{q}(g)$. Final update, March 19, 1998.
[G-V6] G. van der Geer, M. van der Vlugt: On generalized Reed-Muller codes and curves with many points. J. of Number Theory 72 (1998), p. 257-268.
[G-V7] G. van der Geer, M. van der Vlugt: Constructing curves over finite fields with many rational points by solving linear equations. In: Applications of Curves over Finite Fields, M. Fried Ed., Contemporary Math. 245, AMS, Providence, 1999, p. 41-47.
[G-V8] G. van der Geer, M. van der Vlugt: Kummer covers with many points. Finite Fields Appl. 6 (2000), p. 327-341.
[G-V9] G. van der Geer, M. van der Vlugt: Miscellanea, 2001.
[G-X] G. van der Geer, C.P. Xing: Constructing curves over finite fields by narrow ray class fields. Unpublished manuscript, 2000.
[G-K-T] M. Giulietti, G. Korchmáros, F. Torres: Quotient curves of the DeligneLusztig curve of Suzuki type. Preprint, math. AG/0206311.
[Go] V.D. Goppa : Codes on algebraic curves. Sov. Math. Dokl. 24 (1981), p. 170-172.
[Gr] M. Grassl: Private communication, 2003.
[H-Le B] G. Haché, D. Le Brigand: Effective construction of algebraic geometry codes. IEEE Trans. Info. Th. 41 (1995), p. 1615-1628.
[H] J.P. Hansen: Group codes and algebraic curves. Mathematica Gottingensis, Schriftenreihe SFB Geometrie und Analysis, Heft 9, 1987.
[H-S] J.P. Hansen, H. Stichtenoth: Group codes on certain algebraic curves with many rational points. AAECC 1 (1990), p. 67-77.
[H-L1] E. Howe, K. Lauter: Improved upper bounds for the number of points on curves over finite fields. Ann. Inst. Fourier 53 (2003), p. 1677-1737.
[H-L2] E. Howe, K. Lauter: Corrigendum to: Improved upper bounds for the number of points on curves over finite fields. Preprint, September 2006.
[I] Y. Ihara: Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Tokyo 28 (1981), p. 721-724.
[Ka] M. Kawakita: Kummer curves and their fibre products with many rational points. AAECC 14 (2004), p. 55-64.
[Ke] A. Keller: Function fields with many rational places. In: Proc. 5th International Conference on Finite Fields and Applications (Augsburg 1999). Springer, Berlin, 2001, p. 293-303.
[Kö] A. Köhnlein: Obere Punktanzahl von Kurven über endlichen Körpern. Diplomarbeit, Technische Universität Darmstadt, 2003.
[K-T] G. Korchmáros, F. Torres: On the genus of a maximal curve. Math. Ann. 323 (2002), p. 589-608.
[L1] K. Lauter: Ray class field constructions of curves over finite fields with many rational points. In: Algorithmic Number Theory (Talence 1996), H. Cohen Ed., Lecture Notes in Computer Science 1122, Springer, Berlin, 1996, p. 187-195.
[L2] K. Lauter: Non-existence of a curve over \mathbb{F}_{3} of genus 5 with 14 rational points. Proc. AMS 128 (2000), p. 369-374.
[L3] K. Lauter: Improved upper bounds for the number of rational points on algebraic curves over finite fields. C.R. Acad. Sci Paris 328, Série I (1999), p. 1181-1185. [L-L] B. Lopez, I. Luengo: Algebraic curves over \mathbb{F}_{3} with many rational points. In: Algebra, arithmetic and geometry with applications (West-Lafayette, IN, 2000), C. Christensen, G. Sundaram, A. Sathaye, C. Bajaj Eds., Springer Verlag, Berlin 2004, p. 619-626.
[M-Z-Z] O. Moreno, D. Zinoviev, V. Zinoviev: On several new projective curves over \mathbb{F}_{2} of genus 3, 4 and 5. IEEE Trans. Info. Th. 41 (1995), p. 1643-1645.
[N-X1] H. Niederreiter, C. P. Xing: Quasi-random points and global function fields. In: Finite Fields and Applications, S.D. Cohen, H. Niederreiter Eds., Cambridge Univ. Press, Cambridge 1996, p. 269-296.
[N-X2] H. Niederreiter, C. P. Xing: Explicit global function fields over the binary field with many rational places. Acta Arithm. 75 (1996), p. 383-396.
[N-X3] H. Niederreiter, C. P. Xing: Cyclotomic function fields, Hilbert class fields and global function fields with many rational places. Acta Arithm. 79 (1997), p. 59-76.
[N-X4] H. Niederreiter, C. P. Xing: Drinfeld modules of rank 1 and algebraic curves with many rational points II. Acta Arithm. 81 (1997), p. 81-100.
[N-X5] H. Niederreiter, C. P. Xing: Global function fields fields with many rational points over the ternary field. Acta Arithm. 83 (1998), p. 65-86.
[N-X6] H. Niederreiter, C. P. Xing: Algebraic curves with many rational points over finite fields of characteristic 2. In: Proc. Number Theory Conference (Zakopane 1997), de Gruyter, 1999, Berlin, p. 359-380.
[N-X7] H. Niederreiter, C. P. Xing: A general method of constructing global function fields with many rational places. In: Algorithmic Number Theory (Portland 1998), Lecture Notes in Comp. Science 1423, Springer, Berlin, 1998, p. 555-566.
[N-X8] H. Niederreiter, C. P. Xing: Nets, (t, s)-sequences and algebraic geometry. In: Random and quasi-random point sets, Lecture Notes in Statistics 138, Springer, New York, 1998, p. 267-302,
[O-S] F. Özbudak, H. Stichtenoth: Curves with many points and configurations of hyperplanes over finite fields. Finite Fields and Appl. 5 (1999), p. 436-449.
[O-T] F. Özbudak, B.G. Temur: Fibre products of Kummer covers and curves with many points. Preprint, Middle East Technical University, Ankara, 2005.
[P-T] R. Pellikaan, F. Torres: On Weierstrass semigroups and the redundancy of improved geometric Goppa codes. IEEE Trans. Inf. Theory 45, p. 2512-2519, 1999.
[R] C. Ritzenthaler: Existence d'une courbe sur \mathbb{F}_{3} de genre 5 avec 13 points rationnels. Université Paris VII, 2003.
[Sa] D. Savitt: The maximum number of points on a curve of genus 4 over \mathbb{F}_{8} is 25 . Canadian J. Math. 55 (2003), p 331-352.
[Sch] R. Schoof: Algebraic curves and coding theory. UTM 336, Univ. of Trento, 1990.
[Schw] A. Schweizer: On Drinfeld modular curves with many points over finite fields. Finite Fields Appl. 8 (2002), p. 434-443.
[Seg] B. Segre: Introduction to Galois geometries. Atti Acad. Naz. Lincei (Mem. Cl. Sci. Fis. Mat. Natur.) 8 (1967), p. 133-236.
[Sem] S. Sémirat: Problèmes de nombres de classes pour les corps de fonctions et applications. Thèse, Université Pierre et Marie Curie, Paris, 2000.
[S1] J-P. Serre : Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini. C.R. Acad. Sci. Paris 296, Série I (1983), p. 397-402. (= Oeuvres III, No. 128, p. 658-663).
[S2] J-P. Serre : Nombre de points des courbes algébriques sur \mathbb{F}_{q}. Sém. de Théorie des Nombres de Bordeaux, 1982/83, exp. no. 22. (= Oeuvres III, No. 129, p. 664-668).
[S3] J-P. Serre : Quel est le nombre maximum de points rationnels que peut avoir une courbe algébrique de genre g sur un corps fini \mathbb{F}_{q} ? Résumé des Cours de 1983-1984. (=Oeuvres III, No. 132, p. 701-705).
[S4] J-P. Serre: Rational points on curves over finite fields. Notes of lectures at Harvard University 1985.
[S5] J-P. Serre: Letter to G. van der Geer, September 1, 1997.
[Sh] V. Shabat: Curves with many points. Thesis, University of Amsterdam, 2001.
[St1] H. Stichtenoth: Self-dual Goppa codes. J. Pure and Appl. Algebra 55 (1988), p. 199-211.
[St2] H. Stichtenoth: Algebraic-geometric codes associated to Artin-Schreier extensions of $\mathbb{F}_{q}(z)$. In: Proc. 2nd Int. Workshop on Alg. and Comb. Coding Theory, Leningrad (1990), p. 203-206.
[S-V] K.O. Stöhr, J.F. Voloch: Weierstrass points and curves over finite fields. Proc. London Math. Soc. 52 (1986), p. 1-19.
[T] J. Top: Curves of genus 3 over small finite fields. Indag. Math. (N.S.) 14 (2003), p. 275-283.
[Wi] M. Wirtz : Konstruktion und Tabellen linearer Codes. Westfälische WilhelmsUniversität Münster, 1991.
[Wo] J. Wolfmann: Nombre de points rationnels de courbes algébriques sur des corps finis associées à des codes cycliques. C.R. Acad. Sci. Paris 305, Série I (1987), p. 345-348.
[X-N] C. P. Xing, H. Niederreiter: Drinfeld modules of rank 1 and algebraic curves with many rational points. Monatsh. Math. 127 (1999), p. 219-241.
[Z] M. Zieve: Private communication, 1999.
The URL for the tables is: http://www.science.uva.nl/ eqeer.
G. van der Geer

Korteweg-de Vries Instituut
Universiteit van Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
The Netherlands
geer@science.uva.nl
M. van der Vlugt

Mathematisch Instituut
Rijksuniversiteit te Leiden
Niels Bohrweg 1
2300 RA Leiden
The Netherlands
vlugt@math.leidenuniv.nl

[^0]: 1991 Mathematics Subject Classification. Primary 11G20, 14G15, Secondary 14H05.

