Exam Riemann Surfaces (2013)

January 8, 2014. 2-5 pm, Location: VU:WN-Q112

Solve five of the following six problems. If you solve all of these the five best solutions will be counted.

- 1. Let Y be a non-empty open subset of a Riemann surface X. Let $\omega \in \mathcal{E}^{1,0}(Y)$ be a C^{∞} -form of type (1,0). Prove: ω is holomorphic if and only if ω is closed.
- 2. Let X be a compact Riemann surface that is a degree 3 cover of the Riemann sphere \mathbb{P}^1 given by $y^3 = f(x)$ with $f \in \mathbb{C}[x]$ a polynomial of degree 4 with distinct zeros. Determine the genus of X.
- 3. Let X be a compact Riemann surface. Let \mathcal{E} (resp. $\mathcal{E}^{0,1}$) be the sheaf of C^{∞} functions (resp. C^{∞} -differential forms of type (0,1)) on X and $\mathcal{O}_X \subset \mathcal{E}$ the subsheaf of holomorphic functions.
- i) Show that the following sequence of sheaves is exact: $0 \to \mathcal{O}_X \to \mathcal{E} \xrightarrow{\overline{\partial}} \mathcal{E}^{0,1} \to 0$. ii) Prove the isomorphism $H^1(X, \mathcal{O}_X) \cong \mathcal{E}^{0,1}(X)/\overline{\partial}\,\mathcal{E}(X)$.
- 4. Let X be a compact Riemann surface of genus 2 and D a divisor on X. Show that

$$\dim H^0(X, \mathcal{O}_X(D)) = \begin{cases} \deg(D) - 1 & \deg(D) \ge 3\\ 2 & D \sim K, \text{ a canonical divisor}\\ 1 & \deg D = 2, D \not\sim K\\ 0 & \deg D < 0. \end{cases}$$

- 5. Let X be a compact hyperelliptic Riemann surface of genus g > 1 and let $\phi: X \to \mathbb{P}^1$ be the non-constant holomorphic map of degree 2. Let P_1, \ldots, P_r be the ramification points of ϕ on X.
 - i) Prove that r = 2g + 2.
- ii) Prove the linear equivalence: $2P_i \sim 2P_j$ for $1 \leq i, j \leq 2g+2$. iii) Prove the linear equivalence: $\sum_{i=1}^{2g+2} P_i \sim (2g+2) P_1$.
- iv) Prove the linear equivalence $K \sim (2g-2)P_1$ with K a canonical divisor of X.
- 6. Let X be a compact Riemann surface of genus q > 0 and P a point of X. We write $h^{i}(nP) = \dim H^{i}(X, \mathcal{O}_{X}(nP))$ for i = 0, 1.
 - i) Show that $h^{0}(P) = 1$ and $h^{1}(P) = g 1$.
- ii) Show that for n > 0 one has: $h^0(nP) h^0((n-1)P)$ is either 0 or 1.
- iii) Show by induction on N that

$$\#\{n: 1 \le n \le N \text{ such that } h^0(nP) - h^0((n-1)P) = 1\} = N - g + h^1(NP).$$

- iv) Prove that $h^1(NP) = 0$ for N > 2q 2.
- v) Conclude that there are exactly g integers $n_1 < n_2 < \cdots < n_q$ such that there exists no meromorphic function on X having a pole of order n_i at P and no other poles. Furthermore, $n_1 = 1$ and $n_g < 2g$.